DEPARTMENT OF MATHEMATICS

Syllabus Distribution and Teaching Plan

EVEN SEMESTER, Session: 2022-2023

Term I:Commencement of classes to 1st internal,Term II:1st internal to 2nd internal.

Term III: 2nd internal to ESE preparatory break.

Semester II

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal Krishna Das	Course type: Mathematics (Honours) Core Course	<u>Term I</u> : (08 Lectures) Lecture 1: Introduction to Infinite series
	Paper- C3T	Lecture 1: Infoldation to infinite series Lecture 2: Convergence and divergence of infinite series-I
	No. of Classes (Hour) per week: 2	Lecture 2: Convergence and divergence of infinite series-II Lecture 3: Convergence and divergence of infinite series-II Lecture 4: Related problem solution
	Unit-III: Infinite Series: (Marks-18)	Lecture 5: Cauchy criterion and its proof Lecture 6: Solution of problems based on Cauchy criterion
	Infinite series, convergence and divergence of infinite series,	Lecture 7: Tests for convergence: comparison test and its proof. Lecture 8: Related problem solution
	Cauchy criterion, tests for convergence: comparison test,	<u>Term II</u> : (11 Lectures)
	limit comparison test, ratio test, Cauchy's nth root test, integral	
	test. Alternating series, Leibniz test. Absolute and conditional	Lecture 9: Tests for convergence: limit comparison test and its proof
	convergence.	Lecture 10: Related problem solution
		Lecture 11: D' Alembert Ratio test and its proof Lecture 12: Related problem solution
		Lecture 12: Related problem solution Lecture 13: Tests for convergence: Cauchy's nth root test and its proof
		Lecture 14: Related problem solution
		Lecture 15: Tests for convergence: Integral test and its proof Lecture 16: Related problem solution
		Lecture 17: Alternating series and related problems
		Lecture 18: Leibniz test and its proof
		Lecture 19: Related problem solution
		<u>Term III:</u> (05 Lectures + 02 Tutorials)
		Lecture 20: Absolute convergence and related theorems Lecture 21: Solution of problems related to absolute convergence
		Lecture 22: Conditional convergence and related theorems Lecture 23: Solution of problems related to conditional
		convergence Lecture 24: Raabe's test (Statement without proof), Gauss test (Statement without proof), Miscellaneous problems solving
		techniques Tutorial -1
		Tutorial -2

Dr. Pradip Kumar Gain	Course type: Mathematics (Honours) Core Course	<u>Term I:</u> (10 Lectures + 01 Tutorials)
	Paper- C3T No of Classes (Hour) per week: 2 Unit-I: Real Analysis:	 Lecture-1: Number System, concept of natural number, well ordering principle, Integers, Lecture-2: Rational Numbers Irrational numbers Lecture-3: Algebraic structure and order structure of <i>Q</i>. Lecture-4: Review of algebraic and order properties of . <i>R</i>.
	(Marks-24) Review of algebraic and order properties of R , ε -neighborhood of a point in R . Idea of countable sets, uncountable sets	Lecture-5: ε -neighborhood of a point in R . Interior point, exterior point, boundary point, open set, examples of open sets, properties of open sets. Lecture-6: Countability, equivalent set, enumerable sets, equivalent set, enumerable sets, equivalent blocks at a set of equivalent set.
	and uncountability of R , Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infime Completeness property	 countable sets, examples of countable sets. atmost countable sets, uncountable sets Lecture-7: Theorems on countable sets. Problems on countable sets Lecture-8: Q is countable set. The set (0,1) is not enumerable,
	infima. Completeness property of R and its equivalent	Lecture-9: The Closed interval $[a,b]$ is uncountable.
	properties. The Archimedean	Lecture-10: Uncountability of R.
	property, density of rational (and	Tutorial-1
	Irrational) numbers in R , intervals. Limit points of a set, isolated points, open set, closed set, derived set, illustrations of	<u>Term II:</u> (06 Lectures + 02 Tutorials)
	Bolzano-Weierstrass theorem for	Lecture-11: Intervals, bounded sets, examples
	sets, compact sets in R, Heine- Borel Theorem.	Lecture-12: Concept of Supremum and infimum, Greatest and smallest member of a set.
		Lecture-13: Completeness property of <i>R</i> . L.u b axiom
		Lecture-14: G.l.b axiom
		Lecture-15: Archimedean property <i>R</i>
		Lecture-16: Density property <i>R</i> Tutorial-2
		Tutorial-3
		<u>Term III:</u> (06 Lectures + 02 Tutorials)
		Lecture-17: Limit points, isolated points, derived sets, Closed sets, closure of a set.
		Lecture-18: Theorems on closed sets,
		Lecture-19:. Properties of closed sets. Lecture-20: Bolzano-Weierstrass theorem for sets,
		Lecture-20: Doizand Weiderstass theorem for sets, Lecture-21: Covering, sub covering, open covering,
		examples
		Lecture-22: Compact sets in R, Heine-Borel Theorem.
		Tutorial-4 Tutorial-5
	Course type: Mathematics (General) Core Course	<u>Term I:</u> (07 Lectures + 02 Tutorials)
	Paper- DSC1B/2B/3B-T	Lecture-1: First order exact differential equations. Lecture-2: Integrating factors, rules to find an integrating
	No of Classes (Hour) per week: 2	factor.
		Lecture-3: Equations solvable by separation of variables.
	Differential Equations:	Lecture-4: Homogeneous equations of first degree.
	(Marks-30)	Lecture-5: Linear equations of first degree, Bernoulli's Equations.
	First order exact differential	Lecture-6: First order higher degree equations solvable for x
	equations. Integrating factors,	and solvable for y.
	rules to find an integrating factor. First order higher degree	Lecture-7: First order higher degree equations solvable for p.
	First order higher degree equations solvable for x, y, p.	Tutorial-1
	· · · · · · · · · · · · · · · · · · ·	Tutorial-2

	Methods for solving higher-order differential equations. Basic theory of linear differential equations, Wronskian, and its properties. Solving a differential equation by reducing its order. Linear homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters, The Cauchy-Euler equation, Simultaneous differential equations, Total differential equations.	Term II: (05 Lectures + 02 Tutorials)Lecture-8: Basic theory of linear differential equations.Lecture-9: Wronskian, and its properties.Lecture-10: Solving differential equation by reducing its order.Lecture-10: Solving differential equations with constantcoefficientsLecture-11: Linear homogenous equations with constantcoefficientsLecture-12: Same as Lecture-10.Tutorial-3Tutorial-3Tutorial-4Lecture-13: Linear non-homogenous equations,Lecture-13: Linear non-homogenous equations,Lecture-13: Linear non-homogenous equations,Lecture-14: The method of variation of parameters,Lecture-15: The Cauchy-Euler equation,Lecture-16: Simultaneous differential equations,Lecture-17: Total differential equations,Lecture-17: Total differential equations.Tutorial-5Tutorial-6Tutorial-7
Dr. Sangita Chakraborty	Course type: Mathematics (Honours) Core Course Paper- C4T No of Classes (Hour) per week: 3 Unit-III: Differential Equations: (Marks- 9) Equilibrium points, Interpretation of the phase plane, Power series solution of a differential equation about an ordinary point, solution about a regular singular point. Unit-IV: Vector Calculus: (Marks-16) Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions.	Term 1: (08 Lectures + 02 Tutorials) Lecture 1: Introduction to product of three vectors: Scalar Triple product and Vector Triple product, Lecture 2: Geometrical significance of scalar triple product, properties of Triple products. Lecture 3: Applications of Triple products in geometrical problems. Lecture 4: Continuation of the topic in Lecture 3. Lecture 5: Applications of Triple products in mechanics. Lecture 6: Reciprocal system of vectors. Lecture 7: Introduction to vector functions, operations with vector-valued functions. Lecture 8: Limits and continuity of vector functions. Tutorial-1 Tutorial-2 Doubt-clearing session: Lecture 10: Integration of vector functions. Lecture 11: Problems solving for differentiation and integration of vector functions. Lecture 12: Introduction to Equilibrium points for system of differential equations, concepts of trajectories. Lecture 13: Concepts of Phase portrait and the phase plane with examples. Lecture 14: Types and stability classifications of equilibrium solutions. Lecture 15: Continuation of the topic in Lecture 14. Lecture 17: Interpretation of the phase plane. Tutorial-3 Tutorial-4

		<u>Term III:</u> (09 Lectures + 03 Tutorials)
		 <u>Term III:</u> (09 Lectures + 03 Tutorials) Lecture 18: Introduction to Power series, definitions: ordinary points, singular points. Lecture 19: Types of singular points in linear homogeneous differential equation. Lecture 20: To locate and classify the singular points in the differential equations. Lecture 21: Series solution of a differential equation about an ordinary point. Lecture 22: Continuation of the topic in Lecture 21. Lecture 23: Continuation of the topic in Lecture 21. Lecture 24: Series solution of a differential equation about a regular singular point. Lecture 25: Continuation of the topic in Lecture 24. Lecture 26: Continuation of the topic in Lecture 24. Tutorial-5. Tutorial-6: Tutorial-7: Doubt-clearing session: Doubt-clearing session:
		Doubt-clearing session:
Sankar Das	Course type: Mathematics (Honours) Core Course Paper- C4T No of Classes (Hour) per week: 2 Unit-1: Differential Equations:(Marks-22) Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order, principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of undetermined coefficients, method of variation of parameters. Unit-2: Differential Equations: (Marks-13) Systems of linear differential equations, types of linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems	Term 1: (08 Lectures + 02 Tutorials)Lecture 1: Introduction of Second order linear differentialequations.Lecture 2: Linear differential equations of orders higher thanthe second.Lecture 2: Linear differential equations of orders higher thanthe second.Lecture 2: Linear differential equations of orders higher thanthe second.Lecture 3: Lipschitz condition and Picard's Theorem.Lecture 4: General solution of homogeneous equation ofsecond order, principle of super position for homogeneousequation.Lecture 5: Wronskian: its properties and applications.Lecture 6: Linear operator with constant coefficients:Complementary function.Lecture 7: Particular Integral of a differential equation.Lecture 8: Short method of Particular Integral of a differentialequation.Lecture 8: Short method of Particular Integral of a differentialequation.Lecture 9: Linear homogeneous and non-homogeneousequations of higher order with constant coefficients.Lecture 10: The Cauchy-Euler equations.Lecture 10: The Cauchy-Euler equations.Lecture 11: Solving a linear differential equation by themethod of variation of parameters.Lecture 12: The method of variation of parameters.Lecture 13: Miscellaneous

Equations in two unknown functions.	<u>Term III:</u> (05 Lectures + 03 Tutorials)
	 Lecture 15: Systems of linear differential equations, Lecture 16: Types of linear systems, differential operators, Lecture 17: An operator method for linear systems with constant coefficients. Lecture 18: Basic Theory of linear systems in normal form. Lecture 19: homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. Tutorial-5 Tutorial-6 Tutorial-7
Course type: Mathematics (General) Core Course	Term I: (07 Lectures + 03 Tutorials)
(General) Core Course Paper- DSC1B/2B/3B-T No of Classes (Hour) per week: 2 Differential Equations: (Marks-30) Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations, Formation of first order partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method. Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.	Lecture 7: Linear partial differential equation of first order. Tutorial-1 Tutorial-2 Tutorial-3 <u>Term II:</u> (05 Lectures + 03 Tutorials) Lecture 8: Linear partial differential equation of second order. Lecture 9: Lagrange's Auxiliary Equations a linear PDE.
	<u>Term III:</u> (04 Lectures + 03 Tutorials)
	 Lecture 13: Some special method for solving non-linear PDEs. Lecture 14: Classification of second order PDEs into elliptic type. Lecture 15: Classification of second order PDEs into parabolic type. Lecture 16: Classification of second order PDEs into hyperbolic type through illustrations. Tutorial-7 Tutorial-8 Tutorial-9

Anjana	Course type: Mathematics	<u>Term I:</u> (07 Lectures + 02 Tutorials)
Mondal	(Honours) Core Course	
	Paper- C3T	Lecture 1: Some preliminaries on the properties of real number system and real function
	No of Classes (Hour) per week: 2	Lecture 2: Definition of sequences, definition of real
	Unit-II: Real Sequence:	sequences, range of sequences, some examples, difference
	(Marks-18)	between sequences and sets
	Sequences, bounded sequence, convergent sequence, limit of a sequence, lim inf, lim sup. Limit theorems. Monotone sequences, monotone convergence theorem. Subsequences, divergence criteria. Monotone subsequence theorem (statement only), Bolzano Weierstrass theorem for sequences. Cauchy sequence, Cauchy's convergence criterion.	Lecture 3: Convergent sequences, limit of a sequence, geometrical interpretation of convergent sequences, examples of convergent sequences, technique of proving convergent sequence using $\epsilon - \delta$ definition. Lecture 4: Divergent sequences, bounded sequences, relation between convergent and bounded sequences Tutorial-1 Lecture 5: Some theorems on convergent sequences Lecture 6: Limit point of sequences, difference between limit and limit point of sequences Lecture 7: Algebraic properties of limit of sequences and
	Cauchy 5 convergence enterion.	applications.
		Tutorial-2
		<u>Term II:</u> (06 Lectures + 02 Tutorials)
		 Lecture 8: Sandwich theorem and applications Lecture 9: Monotone sequences, Monotone convergence theorem Lecture 10: Some applications of Monotone convergence theorem
		Tutorial-3 Lecture 11: Subsequence, divergence criteria, applications Lecture 12: Monotone subsequence theorem, applications Tutorial-4 Lecture 13: The Bolzano Weierstrass theorem, applications.
		<u>Term III:</u> (06 Lectures + 03 Tutorials)
		Lecture 14: Limit superior and Limit inferior, applications Tutorial-5 Lecture 15: Cauchy sequence and related theorems Lecture 16: Cauchy convergence criterion, applications Tutorial-6 Tutorial-7 Lecture 17: Revision Lecture 18: Revision Lecture 19: Revision

Kousik	Course type: Mathematics	Term I: (06 Lectures + 02 Tutorials)
Bhattacharya	Generic Elective	
Dhuttuchuryu	Paper- GE2T	Lecture 1: Introduction of complex numbers, Polar
	No of Classes (Hour) per week: 2	representation of complex numbers, nth roots of unity
		Lecture 2: De Moivre's theorem for rational indices,
	Unit I: Classical Algebra:	Application of De Moivre's theorem
	(Marks-22)	Lecture 3: Relation between roots and coefficients,
	(Transformation of equations
	Polar representation of complex	Lecture 4: Theory and Applications of Descartes rule of signs
	numbers, nth roots of unity, De	Lecture 5: Solution of cubic equation
	Moivre's theorem for rational	Lecture 6: Solution of Biquadratic equation
	indices and its applications.	Tutorial-1
	Theory of equations, Relation	Tutorial-2
	between roots and coefficients,	
	transformation of equation, Descartes rule of signs, cubic and	Term II: (08 Lectures + 02 Tutorials)
	biquadratic equation. Inequality,	·
	The inequality involving $AM \ge$	Lecture 7: Concept of the inequality $AM \ge GM \ge HM$,
	$GM \ge HM$, Cauchy-Schwartz	Statement and proof of Cauchy-Schwartz inequality
	inequality.	Lecture 8: Introduction to Set and Relations, Properties of
		Equivalence relations
	Unit II: Sets and Integers:	Lecture 9: Different properties of functions
	(Marks-15)	Lecture 10: Composition of functions, Properties of Invertible
		functions
	Equivalence relations.	Lecture 11: Application of one-to-one correspondence,
	Functions, composition of functions, Invertible functions,	Cardinality of sets
	one to one correspondence and	Lecture 12: Well-ordering property of positive integers
	cardinality of a set. Well-	division algorithm
	ordering property of positive	Lecture 13: Divisibility and Euclidean algorithm
	integers, division algorithm,	Lecture 14: Congruence relation between integers
	divisibility and Euclidean	Tutorial-3
	algorithm. Congruence relation	Tutorial-4
	between integers. Principles of	
	Mathematical induction, statement of Fundamental	<u>Term III:</u> (04 Lectures + 02 Tutorials)
	Theorem of Arithmetic.	Lasture 15: Principles of Methometical induction
	Theorem of Antalinetic.	Lecture 15: Principles of Mathematical induction Lecture 16: Different kinds of problems of Mathematical
		induction
		Lecture 17: Statement and application of Fundamental
		Theorem of Arithmetic
		Lecture 18: Problems related to Fundamental theorem of
		Arithmetic
		Tutorial-5
		Tutorial-6
		Doubt clearing session:
		Doubt clearing session:
	1	

Buddhadeb	Course type: Mathematics	Term I: (07 Lectures + 02 Tutorials)
Mondal	Generic Elective	
	Paper- GE2T	Lecture 1: Introduction to systems of linear equations
	No of Classes (Hour) per week: 2	Lecture 2: Row reduction and echelon forms, vector equations
		Lecture 3: The matrix equation Ax=b with examples
	Unit III: Systems of linear	Lecture 4: solution of system of linear equations
	equations: (Marks-09)	Lecture 5: Applications of system of linear equations
		Lecture 6: Linear independence and dependence
	Systems of linear equations, row	Lecture 7: Applications
	reduction and echelon forms,	Tutorial-1
	vector equations, the matrix	Tutorial-2
	equation Ax=b, solution sets of	
	linear systems, applications of system of linear equations, linear	<u>Term II:</u> (07 Lectures + 02 Tutorials)
	independence.	Lecture 8: Introduction to linear transformations with an
	Unit IV:	example
	Linear Transformation and	Lecture 9: Matrix of a linear transformation with an example
	Eigen Values: (Marks- 14)	Lecture 10: Inverse of a matrix with an example
	Eigen values. (Iviaiks- 14)	Lecture 11: Characterizations of invertible matrices
	Introduction to linear transformations, matrix of a	Lecture 12: Subspaces of R ⁿ
	linear transformation, inverse of	Lecture 13: Dimension of subspaces of R ⁿ
	a matrix, characterizations of	Lecture 14: Examples solve
	invertible matrices. Subspaces of	Tutorial-3
	R^{n} , dimension of subspaces of R^{n}	Tutorial-4
	Rank of a matrix, Eigen values,	
	eigen vectors and characteristic	<u>Term III:</u> (04 Lectures + 02 Tutorials)
	equation of a matrix. Cayley- Hamilton theorem and its use in	Lecture 15: Rank of a matrix with an example
	finding the inverse of a matrix	Lecture 16: Eigen values, eigen vectors and characteristic
		equation of a matrix
		Lecture 17: Cayley-Hamilton theorem with an example
		Lecture 18: Finding the inverse of a matrix using Cayley-
		Hamilton theorem
		Tutorial-5
		Tutorial-6

Semester IV

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal	Course type: Mathematics	
Krishna Das	(Honours) Core Course	<u>Term I:</u> (11 Lectures + 02 Tutorials) Unit-II: Improper integrals
	(Honours) core course	Lecture 1: Introduction to Improper integrals
	Paper- C8T	Lecture 2: Improper integrals on a closed and bounded interval,
	No of Classes (Hour) per week: 3	the integrand having infinite discontinuities
		Lecture 3: Different typical examples
	Unit-II: Improper integrals:	Lecture 4: Tests for convergence, positive integrand and related
	(Marks- 11)	theorems
	Improper integrals, Convergence	Lecture 5: Comparison test and its proof
	of Beta and Gamma functions	Lecture 6: Different theorems and their proofs regarding
		improper integrals
	Unit-IV: Fourier Series: (Marks- 07)	Lecture 7: Improper integrals on an unbounded interval
	Fourier series: Definition of	Lecture 8: Beta functions and their properties
	Fourier coefficients and series,	Lecture 9: Gamma function and their properties
	Reimann Lebesgue lemma,	Lecture 10: Solutions of related problems
	Bessel's inequality, Parseval's	Lecture 11: Convergence of Beta and Gamma functions
	identity, Dirichlet's condition.	Tutorial-1
	Examples of Fourier expansions	Tutorial-2
	and summation results for series.	
		<u>Term II:</u> (11 Lectures + 02 Tutorials)
	Unit-V: Power Series:	Unit-IV: Fourier Series
	(Marks- 07) Power series, radius of	Lecture 12: Introduction to Fourier series
	Power series, radius of convergence, Cauchy Hadamard	Lecture 13: Definition of Fourier coefficients and series
	theorem. Differentiation and	Lecture 14: Properties of Fourier coefficients and series
	integration of power series;	Lecture 15: Related problem solution on Fourier series
	Abel's theorem; Weierstrass	Lecture 16: Reimann Lebesgue lemma
	approximation theorem.	Lecture 17: Related problems on Reimann Lebesgue lemma
		Lecture 18: Bessel's inequality and related problems
		Lecture 19: Parseval's identity and related problems
		Lecture 20: Dirichlet's condition and its proof
		Lecture 21: Examples of Fourier expansions
		Lecture 22: Summation results for series
		Tutorial-3
		Tutorial-4
		<u>Term III:</u> (11 Lectures + 02 Tutorials)
		Unit-V: Power Series
		Lecture 23: Introduction of power series
		Lecture 24: Examples and different properties of power series
		Lecture 25: Radius of convergence of power series
		Lecture 26: Interval of convergence of power series
		Lecture 27: Related problems on radius of convergence of
		power series
		Lecture 28: Cauchy Hadamard theorem and its proof
		Lecture 29: Related problems on Cauchy Hadamard theorem
		Lecture 30: Differentiation of power series and related
		problems
		Lecture 31: Integration of power series and related problems
		Lecture 32: Abel's theorem and its application
		Lecture 33: Weierstrass approximation theorem and its
		application
		Tutorial-1
		Tutorial-2

Dr. Dradin	Course types Mothematics	Terms I. (OF Lesturge L 01 Tuterials)
Dr. Pradip	Course type: Mathematics	<u>Term I:</u> (05 Lectures + 01 Tutorials)
Kumar Gain	(Honours) Core Course	
	Paper- C8T	Lecture-1. Inequalities of upper and lower sums, Darboux
	-	integration, Riemann integration.
	No of Classes (Hour) per week: 1	Lecture-2. Darboux theorem, Riemann conditions of
	Unit L. Diamonn integration	integrability,
	Unit-I: Riemann integration (Marks-19)	Lecture-3. Riemann sum and definition of Riemann integral
	(Marks-19)	through Riemann sums.
	In small the of upper and laws	Lecture-4. Equivalence of two definitions.
	Inequalities of upper and lower	Lecture-5. Problems
	sums, Darboux integration, Darboux theorem, Riemann	Tutorial-1
	conditions of integrability,	
	Riemann sum and definition of	<u>Term II:</u> (04 Lectures + 01 Tutorials)
	Riemann integral through	
	Riemann sums, equivalence of	Lecture-6. Riemann integrability of monotone and continuous
	two definitions. Riemann	functions,
	integrability of monotone and	Lecture-7. Properties of the Riemann integral.
	continuous functions, properties	Lecture-8. Definition and integrability of piecewise continuous
	of the Riemann integral;	and monotone functions.
	definition and integrability of	Lecture-9. Problems
	piecewise continuous and	Tutorial-2
	monotone functions.	
	Intermediate Value theorem for	<u>Term III:</u> (05 Lectures + 01 Tutorials)
	Integrals; Fundamental theorem	<u></u> (,
	of Integral Calculus.	Lecture-10. Intermediate Value theorem for Integrals, first
		mean value theorem.
		Lecture-11. Second mean value theorem (Bonnet form)
		Lecture-12. Second mean value theorem (Weierstrass form)
		Lecture-12. Second mean value incorem (weerstaass form) Lecture-13. Fundamental theorem of Integral Calculus.
		Lecture-14. Some examples and problems on Riemann
		integration.
		Tutorial-3
		Tutoriar-5
	Course type: Methometics	Torm I. (05 Lastures L 01 Tutorials)
	Course type: Mathematics (Honours) Skill Enhancement	<u>Term I:</u> (05 Lectures + 01 Tutorials)
	Course	
	Paper- SEC-2T	Lecture-1. Definition, examples and basic properties of graphs
	No of Classes (Hour) per week: 1	Lecture-2. Simple graphs, Multi graphs, Trivial graphs,
	No of Classes (Hour) per week. 1	Handshaking lemma
	Unit-I: Graph Theory :	Lecture-3. Some Important Theorems on graphs
	(Marks-09)	Lecture-4. Complete graphs, bipartite graph, pseudo graphs,
	Definition, examples and basic	regular Graph, planar graphs
	properties of graphs, pseudo	Lecture-5. Isomorphism of graphs. Problems
	graphs, complete graphs,	Tutorial-1
	bipartite graphs isomorphism of	<u>Term II:</u> (04 Lectures + 01 Tutorials)
	graphs.	Lecture-6. Walk, Trial, Path, Circuit, cycle
		Lecture-7. Eulerian trial, Eulerian circuit, Eulerian graph
	Unit-II: Graph Theory :	Lecture-8. Some important theorems
	(Marks-14)	Lecture-9. Hamiltonian cycles, theorems
	Eulerian circuits, Eulerian graph,	Tutorial-2
	semi-Eulerian graph, theorems,	<u>Term III:</u> (03 Lectures + 01 Tutorials)
	Hamiltonian cycles, theorems Representation of a graph by	Lecture-10. Representation of a graph by matrix, the adjacency
	matrix, the adjacency matrix,	matrix of a graph
	incidence matrix, weighted	Lecture-11. Incidence matrix of a graph, examples
	graph.	Lecture-12. Weighted graph, Exercise
		Tutorial-3

Dr. Sangita	Course type: Mathematics	<u>Term I:</u> (06 Lectures + 01 Tutorials)
Chakraborty	(Honours) Core Course	
	Paper- C9T: No of Classes (Hour) per week: 1 Unit-III: Vector Field and Line Integration: (Marks-16) Definition of vector field, divergence and curl. Line integrals, applications of line integrals: mass and work. Fundamental theorem for line integrals, conservative vector fields, independence of path.	 Lecture 1: Introduction to three field operators: the gradient of a scalar field, the divergence and the curl of a vector field. Lecture 2: significance of divergence and curl of a vector field. Lecture 3: Formula relating the three field operators with some useful examples. Lecture 4: introduction to directional derivative and solving some problems. Lecture 5: Irrotational vector, solenoidal vector with solving some problems. Lecture 6: Finding the equations of the tangent plane and normal line to the surface. Tutorial-1 Doubt-clearing session:
	Unit-IV: Green's, Stoke's	<u>Term II:</u> (03 Lectures + 01 Tutorials)
	Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.	Lecture 7: Recapitulation: Vector integration. Introduction to Line integrals: definition and examples. Lecture 8: Applications of line integrals: mass and work. Lecture 9: Fundamental theorem for line integrals, conservative vector field and its relation with the irrorational vector field. Independence of path and its relation with the line integrals. Tutorial-2 Doubt-clearing session: Lecture 10: Introduction to Surface integrals and Volume integrals, its definition and examples. Lecture 11: Green's theorem, integrals over parametrically
		defined surfaces. Lecture 12: Stoke's theorem. Lecture 13: The Divergence theorem of Gauss Lecture 14: Verification of the above theorems. Tutorial-3 Tutorial-4 Doubt-clearing session:
	Course type: Mathematics (Honours) Core Course Paper- C10T No of Classes (Hour) per week: 2 Unit-I: Ring Theory (Marks: 16) Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals. Unit-II:Ring homomorphisms	Term 1: (07 Lectures + 02 Tutorials)Lecture 1: Definition and examples of rings, properties of rings, concepts of zero ring and trivial ring.Lecture 2: Units in the ring of integral quaternions, divisors of zero with examples.Lecture 3: Definition and examples of Integral domain.Lecture 3: Definition and examples of Integral domain.Lecture 4: Characteristic of a ring and an integral domain, idempotent and nilpotent elements with examples.Lecture 5: Definition and examples of Skew field and Fields, properties of fields.Lecture 6: Definition and examples of subrings, necessary and sufficient conditions for a nonempty subset of a ring to be a subring.Lecture 7: Theorems and problems relating subrings.Tutorial-1: Tutorial-2:
	(Marks: 09) Ring homomorphisms,	Doubt-clearing session:

	properties of ring	
	homomorphisms. Isomorphism theorems I, II and III, field of	<u>Term II:</u> (07 Lectures + 02 Tutorials)
	quotients.	
	quotients.	Lecture 8: Definition of Ideals of a ring, necessary and
		sufficient conditions to be an ideal.
		Lecture 9: Examples of ideals, problems solving on ideals,
		Lecture 10: Operations on ideals.
		Lecture 11: Theorems relating ideals.
		Lecture 12: Ideal generated by a subset of a ring. Definition and
		examples of principal ideal.
		Lecture 13: Definitions and examples: prime ideal in a ring.
		Lecture 14: Definitions and examples: maximal ideal in a ring.
		Tutorial-3:
		Tutorial 4: Doubt-clearing session:
		<u>Term III:</u> (07 Lectures + 02 Tutorials)
		Lecture 15: Introduction to factor rings with examples and
		properties, connection with prime and maximal ideals.
		Lecture 16: Introduction to Homomorphism and Isomorphism
		of rings,
		Lecture 17: Examples and properties of ring homomorphisms.
		Lecture 18: Field of quotients.
		Lecture 19: Isomorphism theorem I with proof.
		Lecture 20: Isomorphism theorem II with proof. Lecture 21: Isomorphism theorem III with proof.
		Tutorial-5:
		Tutorial-6:
		Doubt-clearing session:
		Doubt-clearing session:
Sankar Das	Course type: Mathematics	<u>Term I:</u> (12 Lectures + 02 Tutorials)
	(Honours) Core Course	
	Paper- C9T	Lecture 1: Introduction of functions of several variables.
	No of Classes (Hour) per week: 3	Lecture 2: Explicit and Implicit functions.
		Lecture 3: Limit point and limit of a function of two variables.
	Unit-I: Functions of several variables: (Marks-21)	Lecture 4: Repeated limit and Simultaneous limit of a function
	variables. (iviarks-21)	of two variables.
	Functions of several variables,	Lecture 5: Continuity of a function of two variables.
	limit and continuity of functions	Lecture 6: Discontinuity of a function of two variables.
	of two or more variables Partial	Lecture 7: Sufficient condition for continuity of a function of two variables.
	differentiation, total	Lecture 8: Partial differentiation of a function.
	differentiability and	Lecture 3: Partial differentiability and differentiability.
	differentiability, sufficient condition for differentiability.	Lecture 9: Total differentiability.
	Chain rule for one and two	Lecture 10: Sufficient condition for differentiability. Lecture 11: Partial derivatives of higher order.
	independent parameters,	Lecture 11: Young's theorem and Schwarz's theorem.
	directional derivatives, the	Tutorial-1:
	gradient, maximal and normal	Tutorial-2:
	property of the gradient, tangent	<u>Term II:</u> (09 Lectures + 03 Tutorials)
	planes, Extrema of functions of	
	two variables, method of	Lecture 13: Differentials of higher order.
	I I I I I I I I I I I I I I I I I I I	Lecture 10. Enterentius of inglier ofder.
	Lagrange multipliers,	Lecture 14. The derivation of composite functions: Chain rule
	constrained optimization	Lecture 14: The derivation of composite functions: Chain rule for one and two independent parameters
		for one and two independent parameters.
	constrained optimization	-

	Unit-II: Multivariable	Lecture 17: The gradient, maximal and normal property of
	Integration: (Marks-14)	the gradient,
	Double integration over	tangent planes.
	rectangular region, double	Lecture 18: Stationary points, Extreme points and saddle
	integration over non-rectangular	points.
	region, Double integrals in polar	Lecture 19: Extrema of functions of two variables,
	co-ordinates, Triple integrals, triple integral over a	Lecture 20: Method of Lagrange multipliers. Lecture 21: Constrained optimization problems.
	parallelepiped and solid regions.	Tutorial-3
	Volume by triple integrals,	Tutorial-4
	cylindrical and spherical co- ordinates. Change of variables in	Tutorial-5
	double integrals and triple integrals.	<u>Term III:</u> (09 Lectures + 03 Tutorials)
		Lecture 22: Introduction of Double and Triple integrations.
		Lecture 23: Double integration over rectangular region.
		Lecture 24: Double integration over non-rectangular region. Lecture 25: Double integrals in polar co-ordinates.
		Lecture 25: Double integrals in polar co-ordinates. Lecture 26: Triple integrals over a parallelepiped and solid
		regions.
		Lecture 27: Volume by triple integrals.
		Lecture 28: Triple integrals over a cylindrical and spherical co-
		ordinate. Lecture 29: Change of variables in double integrals.
		Lecture 30: Change of variables in triple integrals.
		Tutorial-3
		Tutorial-4
		Tutorial-5
Anjana	Course type: Mathematics	
		1 ierm ierm
Mondal	(Honours)	<u>Term I:</u> (06 Lectures + 03 Tutorials)
•	(Honours) Core Course	Lecture 1: Sequence of real numbers, sequence of functions,
•	(Honours) Core Course Paper- C8T	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16)	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on	 Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions
•	 (Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit 	 Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of	 Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2
•	 (Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions; Theorems on the continuity 	 Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7
•	 (Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion 	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7 Lecture 9: Theorems on integrability of the limit function of a sequence of functions Lecture 10: Applications of the theorems taught in Lecture 9.
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7 Lecture 9: Theorems on integrability of the limit function of a sequence of functions Lecture 10: Applications of the theorems taught in Lecture 9. Lecture 11: Series of functions, pointwise and uniform
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7 Lecture 9: Theorems on integrability of the limit function of a sequence of functions Lecture 10: Applications of the theorems taught in Lecture 9. Lecture 11: Series of functions, pointwise and uniform convergence of series of functions
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7 Lecture 9: Theorems on integrability of the limit function of a sequence of functions Lecture 10: Applications of the theorems taught in Lecture 9. Lecture 11: Series of functions, pointwise and uniform convergence of series of functions Lecture 12: Weierstrass M-Test
•	(Honours) Core Course Paper- C8T Unit-III: Sequence of functions: (Marks-16) No of Classes (Hour) per week: 3 Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and	Lecture 1: Sequence of real numbers, sequence of functions, Pointwise convergence Lecture 2: Uniform convergence of sequence of functions Lecture 3: Exercises on pointwise and uniform convergences Tutorial-1 Lecture 4: Cauchy's criterion for uniform convergence Lecture 5: Examples of uniform convergence on using Cauchy's criterion Lecture 6: Theorems on boundedness and continuity of the limit function of a sequence of functions Tutorial-2 Tutorial-3 Lecture 7: Theorems on derivability of the limit of a sequence of functions Lecture 8: Applications of the theorems taught in Lecture 7 Lecture 9: Theorems on integrability of the limit function of a sequence of functions Lecture 10: Applications of the theorems taught in Lecture 9. Lecture 11: Series of functions, pointwise and uniform convergence of series of functions

	<u>Term III:</u> (09 Lectures + 02 Tutorials)
	Lecture 13: Cauchy criterion for uniform convergence Lecture 14: Applications of Lecture 13 Lecture 15: Theorems on the continuity of the sum function of a series of functions Lecture 16: Theorems on the derivability of the sum function of a series of functions Lecture 17: Applications of the theorems taught in Lecture 16 Tutorial-6 Tutorial-7 Lecture 18: Revision Lecture 19: Revision Lecture 20: Revision Lecture 21: Revision
Course type: Mathematics (General) Core Course	<u>Term I:</u> (07 Lectures + 03 Tutorials)
Paper- DSC1D/2D/3D-T No of Classes (Hour) per week: 2 Algebra: Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn (R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions. Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group. Cosets, Index of subgroups: their definition, examples, and characterizations, Quotient groups.	Lecture 1: Binary composition, groupoid, semigroup, monoid, quasigroup and examples Lecture 2: Definition and examples of groups and some theorems related to this Tutorial-1 Lecture 3: Abelian, non-ableian groups, examples, theorems and applications Lecture 4: The group Z_n of integers under addition modulo n Lecture 5: The group $U(n)$ of units under multiplication modulo n Tutorial-2 Lecture 6: Cyclic groups and examples Lecture 7: Results on cyclic groups and application Tutorial-3 Lecture 8: The general linear group $GL_n(R)$ Lecture 9: Groups of symmetries of an (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square Lecture 10: Permutation group and symmetric group S_n , Group of quaternions Lecture 11: Subgroups, examples Lecture 12: Cyclic subgroups Lecture 13: the concept of a subgroup generated by a subset and the commutator subgroup of group Lecture 14: Center of a group Tutorial-4 Tutorial-5 Lecture 19: [07 Lectures + 02 Tutorials]
	Lecture 15: Cosets Lecture 16: Index of subgroup Lecture 17: Lagrange's theorem Lecture 18: Order of an element, order of group Lecture 19: Normal subgroups, their definitions, examples, characterization Lecture 20: Theorems on normal subgroups Lecture 21: Quotient groups

		Tutorial-6
		Tutorial-7
Kousik Bhattacharya	Course type: Mathematics (Honours) Skill Enhancement	<u>Term I:</u> (02 Lectures + 02 Tutorials)
Dilattacilar ya	Course Paper- SEC-2T No of Classes (Hour) per week: 1	Lecture 1: Solution of Travelling salesman's problem Lecture 2: Shortest path problems and their solutions Tutorial-1 Tutorial-2
	Unit-III: Graph Theory:	<u>Term II:</u> (02 Lectures + 02 Tutorials)
	(Marks- 11) Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm,	Lecture 3: Graphs with circuit and without circuit Lecture 4: Tree and related examples, Properties of trees Tutorial-3 Tutorial-4
	Warshall algorithm.	<u>Term III:</u> (02 Lectures + 02 Tutorials)
		Lecture 5: Spanning tree and their properties Lecture 6: Dijkstra's algorithm, Warshall algorithm Tutorial-5 Tutorial-6
		Doubt clearing session:
Buddhadeb Mondal	Course type: Mathematics (Honours) Core Course	<u>Term I:</u> (08 Lectures + 02 Tutorials)
Mondal	 (Honours) Core Course Paper- C10T No of Classes (Hour) per week: 2 Unit-III: Vector Spaces: (Marks-16) Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces. Unit-IV: Linear Transformations: (Marks-19) Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix. 	Lecture 1: Introduction to Vector spaces with an examples Lecture 2: Subspaces with an examples Lecture 3: Algebra of subspaces with an examples Lecture 4: Quotient spaces with examples Lecture 5: Linear combination of vectors with examples Lecture 6: linear span with examples Lecture 7: linear independence and dependence Lecture 8: Basis and dimension dimension of subspaces. Tutorial-1 Tutorial-2 <u>Term II:</u> (07 Lectures + 02 Tutorials) Lecture 9: Linear transformations with an examples Lecture 10: Null space, range of a linear transformation Lecture 11: Rank and nullity of a linear transformation Lecture 12: Algebraic theorem over rank and nullity Lecture 13: Matrix representation of a linear transformation Lecture 14: Determine the rank of a matrix of linear transformation Lecture 15: Algebra of linear transformations Tutorial-3 Tutorial-4 <u>Term III:</u> (04 Lectures + 02 Tutorials) Lecture 16: Introduction to Isomorphism with an examples Lecture 17: Isomorphism theorems Lecture 19: Change of coordinate matrix Tutorial-5 Tutorial-6

Course type: Mathematics	<u>Term I:</u> (04 Lectures + 02 Tutorials)
(General) Core Course	
	Lecture 1: Introduction of rings with examples
Paper- DSC1D/2D/3D-T	Lecture 2: Examples of commutative and non-commutative
No of Classes (Hour) per week: 2	rings
	Lecture 3: Rings from number systems
Algebra:	Lecture 4: Zn the ring of integers modulo n, ring of real
Definition and examples of	
rings, examples of	Tutorial-1
commutative and non-	1 utor lai-2
commutative rings: rings from	
number systems, Z_n the ring of	
integers modulo n, ring of real	Liceure 5. Milligs of manifest, porynomial migs
quaternions, Rings of	\mathbf{D}
matrices, polynomial rings	rings
and rings of continuous	Lecture 7: Rings of continuous functions with an examples
functions. Subrings and	Lecture 8: Subrings with an examples
ideals, Integral domains and	Lecture 9: Algebra of subrings
fields, examples of fields: Zp.	Lecture 10: Ideals with an examples
Q, R, and C. Field of rational	Lecture 11: Algebraic theorem over Ideal
functions.	Tutorial-3
	Tutorial-4
	Term III: (07 Lectures + 02 Tutorials)
	Lecture 12: Integral domains with an examples
	Lecture 12: Algebra of integral domain
	Lecture 13: Algebra of Integral domain Lecture 14: Fields with examples
	-
	Lecture 15: Algebra of field Lecture 16: Relation between integral domain and field with
	examples
	Lecture 17: Examine the field test of this sets Z _p , Q, R, and C.
	Lecture 18: Field of rational functions
	Tutorial-5
	Tutorial-6

TeacherDr. Bimal Krishna DasCourse type: Mathematics (Honours)Discipline Specific Elective Paper- DSE4T No of Classes (Hour) per week: 3Term I: (11 Lectures + 02 Tutor Lecture 1: Introduction to series solution Lecture 2: Ordinary point, Singular point, point Lecture 3: Related problems of ordinary regular singular point Lecture 4: Series Solution at an ordinary point Lecture 5: Different kind of Problems and the Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its properties	
Krishna Das(Honours)Discipline Specific ElectiveLecture 1: Introduction to series solutionPaper- DSE4TLecture 2: Ordinary point, Singular point,No of Classes (Hour) per week: 3Lecture 3: Related problems of ordinaryUnit-I: Special Functions and Laplace Transform: (Marks- 32)Lecture 4: Series Solution at an ordinary pointLecture 5: Different kind of Problems and the Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its propertie	
Discipline Specific ElectiveLecture 1: Introduction to series solutionPaper- DSE4TLecture 2: Ordinary point, Singular point, pointNo of Classes (Hour) per week: 3Lecture 3: Related problems of ordinary regular singular pointUnit-I: Special Functions and Laplace Transform: (Marks- 32)Lecture 4: Series Solution at an ordinary point Lecture 5: Different kind of Problems and the Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its properties	Regular singular
Paper- DSE4TpointNo of Classes (Hour) per week: 3pointUnit-I: Special Functions and Laplace Transform: (Marks- 32)pointPower series solution of Power series solution ofLecture 3: Related problems of ordinary regular singular pointPower series solution of Power series solution ofpointPower series solution of Power series solution ofpoint Power series solution of Power series solution of	Regular singular
No of Classes (Hour) per week: 3Lecture 3: Related problems of ordinary regular singular pointUnit-I: Special Functions and Laplace Transform: (Marks- 32)Lecture 4: Series Solution at an ordinary point Lecture 5: Different kind of Problems and the Lecture 7: Different kind of Problems and the Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its properties	0 0
Unit-I: Special Functions and Laplace Transform: (Marks- 32) Power series solution of Power series solution of	•
Unit-I:Special Functions and Laplace Transform: (Marks- 32)Lecture 4: Series Solution at an ordinary point Lecture 5: Different kind of Problems and the Lecture 6: Series Solution near a regular sing Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its property	point,
and Laplace Transform: (Marks- 32)Lecture 5: Different kind of Problems and the Lecture 6: Series Solution near a regular sing Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its properties	ht
(Marks- 32) Power series solution of Power series solution of Composition of Composition (Marks- 32) (Marks- 32) Lecture 6: Series Solution near a regular sing Lecture 7: Different kind of Problems and the Lecture 8: Legendre equation and its properties	
Power series solution of Lecture 8: Legendre equation and its properti	ular point
Bessel's equation and Lecture 9. Solution of Legendre equation	les
Bessel's equation and Legendre's equation, Laplace Lecture 9: Solution of Legendre equation Lecture 10: Bessel equation and Bessel funct	ion
transform and inverse Lecture 11: Solution of Bessel equation	1011
transform, application to Tutorial-1	
initial value problem up to Tutorial-2	
second order. <u>Term II:</u> (11 Lectures + 02 Tuto	rials)
Lecture 12: Introduction to Laplace transform	n
Lecture 13: Laplace transform of some elem	
Lecture 14: The inverse Laplace transform of	-
functions	
Lecture 15: Piecewise functions and Function	ns of exponential
order Lecture 16: Sufficient conditions for the exist	tence of Lanlace
transform	tence of Laplace
Lecture 17: Properties of Laplace transform a	and its inverse
Lecture 18: Laplace transform of the integral	s
Lecture 19: Convolution theorem	a
Lecture 20: Related problems on convolution Lecture 21: Proof of $\int_0^t t^{a-1}(1-t)^{b-1}dt =$	
Lecture 22: Proof of $\int_0^t \sin u \cos(t-u) du =$	$=\frac{1}{2}t\sin t$, Proof
of $F(p) = \frac{1}{1 - e^{-pT}} \int_0^T e^{-pT} f(t) dt$, where $f(t)$	is a periodic
function with period T>0. Tutorial-3	
Tutorial-4	
<u>Term III:</u> (11 Lectures + 02 Tuto	•
Lecture 23: Laplace transform of a function m integral power of t	nuitiplied by the
Lecture 24: Laplace transform of a function d	ivided by t
Lecture 25: Laplace transform of two special	•
Lecture 26: Solution of problems related to La	
Lecture 27: Laplace transform of derivatives	
Lecture 28: Statement and proof of Initial Val	
Final Value Theorem using Laplace transform Lecture 29: Solution of ordinary differential e	
Laplace transform	quations by
Lecture 30: Related problems and solutions	

Dr. Pradip Kumar Gain	Course type: Mathematics (Honours) Core Course Paper- C13T No of Classes (Hour) per week: 3 Unit-I: Metric Spaces: (Marks-07) Metric spaces: sequences in metric spaces, Cauchy sequences. Complete metric spaces, Cantor's theorem. Unit-II: Metric Spaces: (Marks-14) Continuous mappings, sequential criterion and other characterizations of continuity. Uniform continuity. Uniform continuity. Connectedness: Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, totally bounded spaces, finite intersection property, and continuous functions on	Lecture 31: Solution of partial differential equations by Laplace transform Lecture 32: Related problems and solutions Lecture 33: Application of Laplace transform to partial differential equations Tutorial-5 Tutorial-6 Term I: (06 Lectures + 02 Tutorials) Lecture-1. Metric spaces: sequences in metric spaces, Cauchy sequences. Lecture-2. Complete metric spaces, incomplete metric spaces, examples. Lecture-3. Nested sequences of sets, Cantor's intersection theorem. Lecture-4. Problems on metric spaces. Lecture-5. Sequential criterion and other characterizations of continuity. Lecture-6. Uniform continuity. Tutorial-1 Tutorial-1 Tutorial-2 <u>Term II: (07 Lectures + 02 Tutorials)</u> Lecture-8. Dsconnected subsets of R. Hausdorff- Lennes condition. Lecture-9. Connectedness. Lecture-9. Connected spaces and disconnected sets. Theorems on connectedness. Lecture-9. Connected sets in the real line. Lecture-9. Connected sets in the real line. Lecture-10. Compactness, Lindel <i>ö</i> f Covering Theorem, Heine-Borel property, Heine-Borel theorem. Finite intersection property. Lecture-11. Continuity and compactness. Lecture-12. Sequentially compact spaces, Properties of
	compact sets. Homeomorphism. Contraction mappings. Banach fixed point theorem and its application to ordinary	Lecture-13. Compactness and total boundedness. Totally bounded spaces. Tutorial-3 Tutorial-4
	differential equation.	Term III: (04 Lectures + 02 Tutorials) Lecture-14. Homeomorphism. Contraction mappings. Lecture-15. Banach fixed point theorem. Lecture-16. Applications of Banach fixed point theorem to ordinary differential equation. Lecture-17. Problems. Tutorial-5 Tutorial-6
Dr. Sangita Chakraborty	Course type: Mathematics (Honours) Core Course	<u>Term I:</u> (10 Lectures + 02 Tutorials) Lecture 1: Recapitulation: Rings and its properties, examples of
	Paper- C14T: Ring Theory II:	rings. Introduction to the set of all polynomials over a ring and to show it forms a ring.
	No of Classes (Hour) per week: 3 Unit-I: Polynomial Rings (Marks: 21)	Lecture 2: Properties of polynomial rings over commutative rings, integral domain and field.Lecture 3: Degrees of polynomials and its related theorems with examples, Division algorithm for polynomials with its proof.

Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z[x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.	 Lecture 4: Consequences of Division algorithm: Remainder theorem, Factor theorem, maximum number of zeros of polynomial depending on its degree with examples. Lecture 5: Factorization in Integral Domain: Definitions: Associates, irreducible elements, prime elements, multiplicative norm function, GCD, LCM. Lecture 6: Theorems relating prime element and irreducible element with examples. Lecture 7: Problems solving for finding irreducible element and prime element using multiplicative norm function. Lecture 8: Factorization of polynomials: Definition of irreducible and reducible polynomials with examples, Reducibility test for polynomials of degrees 2 and 3 with examples. Lecture 9: Methods of testing irreducibility for polynomials: Brute Force method, Roots test. Lecture 10: Continuation of irreducibility testing methods: Rational root test, Eisenstein criterion, Mod p irreducibility test. Tutorial-1 Tutorial-2 Doubt-clearing session :
	<u>Term II:</u> (09 Lectures + 02 Tutorials)
	 Lecture 11: Irreducibility of pth cyclotomic polynomial, Solution of some exercises on testing irreducibility for polynomials. Lecture 12: Theorems relating principal ideal and maximal ideal with irreducibility of polynomial Lecture 13: Application Lecture 12 on some problems. Lecture 14: Definition of Primitive polynomial, Gauss Lemma. Lecture 15: Theorem relating reducibility over Q implies reducibility over Z. Lecture 16: Introduction to Unique Factorization Domain (UFD), criterion for D[x] to be a UFD. Lecture 17: Irreducible and prime elements in a UFD, problems solving to check I.D. as a UFD. Lecture 18: Introduction to Principal Ideal Domain (PID), behaviour of irreducible and prime elements in a PID. Lecture 19: Theorem to prove every PID is a UFD. Tutorial-3 Tutorial-4 Doubt-clearing session:
	<u>Term III:</u> (08 Lectures + 02 Tutorials)
	 Lecture 19: Introduction to Euclidean Domain (E.D.) with examples. Lecture 20: Relation between E.D., PID and UFD with related theorems and proofs. Lecture 21: Euclidean algorithm Lecture 22: Application of Lecture for finding a GCD. Lecture 23: Solving problems on Euclidean valuation. Lecture 24: Solving problems on E.D. Lecture 25: Solving problems on PID. Lecture 26: Solving problems on UFD. Tutorial-5

		Tutorial-6
		Doubt-clearing session:
		Doubt-clearing session:
Sankar Dag	Course trings Mathematics	
Sankar Das	Course type: Mathematics (Honours) Core Course	<u>Term I:</u> (09 Lectures + 03 Tutorials)
	Banar C14T.	Lecture 1: Introduction of Euclidean space and Inner product
	Paper- C14T: Linear Algebra II	spaces. Lecture 2: Norm of a vector and its related properties.
	No of Classes (Hour) per week: 3	Lecture 2: Norm of a vector and its related properties. Lecture 3: Schwarz's inequality, Triangle inequality.
		Lecture 4: Unit vector, Orthogonal and Orthonormal set of
	Unit-II: Diagonalization	vectors.
	and Canonical Forms:	Lecture 5: Bessel's inequality and Parseval's theorem.
	(Marks-18)	Lecture 6: Gram-Schmidt orthogonalization process.
	Dual spaces, dual basis, double dual, transpose of a	Lecture 7: orthogonal complements.
	linear transformation and its	Lecture 8: Cayley-Hamilton theorem. Lecture 9: Dual spaces, dual basis, double dual.
	matrix in the dual basis,	Tutorial-1
	annihilators. Eigen spaces of	Tutorial-2
	a linear operator,	Tutorial-3
	diagonalizability, invariant	
	subspaces and Cayley- Hamilton theorem, the	<u>Term II:</u> (10 Lectures + 02 Tutorials)
	minimal polynomial for a	Lecture 10: Introduction of Linear mapping.
	linear operator, canonical	Lecture 11: Matrix representation of a Linear mapping.
	forms.	Lecture 12: Matrix of the composite mapping and inverse
		mapping.
	Unit-III: Inner Product	Lecture 13: Transpose of a linear transformation and its matrix
	Spaces: (Marks-21)	in the dual basis, annihilators.
	Inner product spaces and	Lecture 14: Algebraic operations on the set of all Linear
	norms, Gram-Schmidt	mappings. Lecture 15: Isomorphism between Linear mappings and
	orthogonalization process,	matrices.
	orthogonal complements,	Lecture 16: Linear operator and its adjoint.
	Bessel's inequality, the	Lecture 17: Normal and self-adjoint operators.
	adjoint of a linear operator.	Lecture 18: Least squares approximation, minimal solutions to
	Least squares approximation,	systems of linear equations.
	minimal solutions to systems	Lecture 19: Orthogonal projections and Spectral theorem.
	of linear equations. Normal	Tutorial-4
	and self-adjoint operators.	Tutorial-5
	Orthogonal projections and Spectral theorem.	<u>Term III:</u> (10 Lectures + 02 Tutorials)
		Lecture 20: Matrix representation of a linear operator.
		Lecture 21: Orthogonal mapping of the Euclidean spaces.
		Lecture 22: Matrix of an orthogonal transformation.
		Lecture 23: Eigen spaces of a linear operator.
		Lecture 24: Diagonalization of a matrix, Orthogonal
		diagonalisation.
		Lecture 25: Diagonalization of linear operator. Lecture 26: invariant subspaces.
		Lecture 20: Invariant subspaces. Lecture 27: The minimal polynomial for a linear operator.
		Lecture 27: The minimal polynomial for a meal operator. Lecture 28: Introduction of Quadratic forms with its classes.
		Lecture 29: Reduction to canonical forms.
		Tutorial-6
		Tutorial-7

Anjana	Course type: Mathematics	<u>Term I:</u> (08 Lectures + 02 Tutorials)
Mondal	(Honours) Core Course	
		Lecture 1: Some preliminaries on complex numbers,
	Paper- C13T:	properties, regions in the complex plane
	Complex Analysis:	Lecture 2: Complex function, Graphing complex functions,
	No of Classes (Hour) per week: 3	limit of complex functions, examples, theorems, exercises
		Lecture 3: Limits of complex functions involving the point at
	Unit-III: Complex Analysis	infinity, theorems, examples, exercises
	(Marks-11)	Lecture 4: Continuity of complex functions, theorems,
	Limits, limits involving the	examples and exercises
	point at infinity, continuity.	Tutorial-1
	Properties of complex	Lecture 5: Derivatives, differentiation formulas
	numbers, regions in the	Lecture 6: Cauchy-Riemann equations in Cartesian coordinate
	complex plane, functions of	system, applications
	complex variable, mappings. Derivatives, differentiation	Lecture 7: Cauchy-Riemann equations in polar coordinate
	formulas, Cauchy-Riemann	system, applications
	equations, cauchy-Remain sufficient	Lecture 8: Sufficient conditions of differentiability
	conditions for differentiability	Tutorial-2
	conditions for differentiability	
	Unit IV: Complex Analysis	Torm II: (07 Loctures + 04 Tutorials)
	(Marks-14)	<u>Term II:</u> (07 Lectures + 04 Tutorials)
	Analytic functions, examples	Lecture 9: Analytic functions, examples Lecture 10: Some results on analytic functions
	of analytic functions,	Tutorial-3
	exponential function,	Lecture 11: Exponential function, their properties and
	logarithmic function,	derivatives of the functions
	trigonometric function,	Lecture 12: logarithmic function, trigonometric function,
	derivatives of functions, and	properties and derivatives of the functions
	definite integrals of functions.	Tutorial-4
	Contours, Contour integrals	Lecture 13: The definite integrals of complex valued functions
	and its examples, upper	Lecture 14: Contours, Contour integrals and its examples, upper
	bounds for moduli of contour	bounds for moduli of contour integrals.
	integrals. Cauchy- Goursat	Tutorial-5
	theorem, Cauchy integral	Tutorial-6
	formula.	
		<u>Term III:</u> (10 Lectures + 03 Tutorials)
	Unit V: Complex Analysis	Lecture 15: Cauchy- Goursat theorem and applications
	(Marks-07) Liouville's theorem and the	Lecture 16: Cauchy integral formula and applications
	fundamental theorem of	Tutorial-7
	algebra. Convergence of	Lecture 17: Liouville's theorem and applications, the
	sequences and series, Taylor	fundamental theorem of algebra.
	series and its examples.	Lecture 18: Convergence of complex sequences and series
	series and its examples.	Lecture 19: Taylor series and its examples
	Unit VI: Complex Analysis	Lecture 20: Tutorial
	(Marks-07)	Lecture 21: Laurent series and its examples
	Laurent series and its	Tutorial-8
	examples, absolute and	Lecture 22: absolute and uniform convergence of power series. Tutorial-9
	uniform convergence of	Lecture 23: Revision
	power series.	Lecture 23: Revision

	Course type: Mathematics (Honours)	<u>Term I:</u> (04 Lectures + 01 Tutorials)
	Discipline Specific Elective Paper- DSE3T Number Theory:	Lecture 1: Linear diophantine equation and examples Lecture 2: prime counting function Lecture 3: statement of prime number theorem and applications
	No of Classes (Hour) per week: 1	Lecture 4: Goldbach conjecture Tutorial-1
	Unit I: Diophantine Equation and Conguences: (Marks- 21)	<u>Term II:</u> (04 Lectures + 01 Tutorials)
	Linear diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of	 Lecture 5: linear congruences and related theorems, examples Lecture 6: complete set of residues Lecture 7: Chinese remainder theorem Lecture 8: Applications of Chinese remainder theorem Tutorial-2
	residues. Chinese remainder theorem, Fermat's little	<u>Term II:</u> (03 Lectures + 01 Tutorials)
	theorem, Wilson's theorem.	Lecture 9: Fermat's little theorem Lecture 10: Fermat's little theorem and applications Lecture 11: Wilson's theorem Tutorial-3
Kousik Bhattacharwa	Course type: Mathematics	<u>Term I:</u> (06 Lectures + 02 Tutorials)
Bhattacharya	Course type: Mathematics (Honours) Discipline Specific Elective Paper- DSE4T Mathematical Modelling: No of Classes (Hour) per week: 2 Unit-II: Monte Carlo simulation modelling: (Marks- 28) Monte Carlo simulation modelling: simulating deterministic behavior (area under a curve, volume under a surface), generating random numbers: middle square method, linear congruence, queuing models: harbor system, morning rush hour, Overview of optimization modelling. Linear programming model: geometric solution algebraic solution, simplex method, sensitivity analysis.	Lecture 1: Introduction to simulation and its applications Lecture 2: Procedure for modelling Lecture 3: simulating deterministic behaviour: area under a curve Lecture 4: Related algorithms and problems Lecture 5: simulating deterministic behaviour: volume under a surface Lecture 6: Related algorithms and problems Tutorial-1 Tutorial-2 <u>Term II:</u> (08 Lectures + 02 Tutorials) Lecture 7: Introduction to random numbers and pseudo random numbers Lecture 8: Generating random numbers: middle square method and related problems Lecture 9: Generating random numbers: linear congruence method and related problems Lecture 10: Introduction to queuing models Lecture 11: Queuing models: Harbor system, Morning rush hour Lecture 12: Overview of optimization modelling Lecture 13: Different kinds of optimization methods (Geometric programming, Stochastic programming) Lecture 14: Different kinds of optimization methods (Geometric programming, Stochastic programming) Lecture 14: Different kinds of optimization methods (Dynamic programming, Goal programming, Integer programming problem) Tutorial-3 Tutorial-4

	<u>Term III:</u> (05 Lectures + 02 Tutorials)
	Lecture 15: Linear programming model and its application. Advantages and disadvantages of LPP Lecture 16: Procedure for solving LPP, Geometric solution LPP, Algebraic solution of LPP Lecture 17: Procedure of simplex method Lecture 18: Problem solution using simplex method Lecture 19: sensitivity analysis of Linear programming problem Tutorial-5 Tutorial-6 Doubt clearing session:
Course type: Mathematics (General)	<u>Term I:</u> (06 Lectures + 02 Tutorials)
Discipline Specific Elective	Lecture 1: Introduction to Linear Programming Lecture 2: Definition and notations of Linear Programming
Paper- DSE-1B/2B/3B-T: No of Classes (Hour) per week: 2	Lecture 3: Formulation of LPP Lecture 4: Different problem formulation of LPP Lecture 5: Discussion about different kind of solution
Linear Programming:	procedure of LPP
Linear Programming:	Lecture 6: Solution algorithm
Definition and formation	Tutorial-1
Problems, Graphical	Tutorial-2
Approach for solving some Linear Programming problems. Convex Sets,	<u>Term II:</u> (08 Lectures + 02 Tutorials)
Supporting and Separating	Lecture 7: Graphical Method of solving LPP
Hyperplanes.	Lecture 8: Problem Solution by graphical method
	Lecture 9: Algebraic method of solving LPP
	Lecture 10 : Problem solution by algebraic method
	Lecture 11: Application of LPP in real world problem
	Lecture 12: Introduction to Convex sets
	Lecture 13: Different examples of convex sets with diagram Lecture 14: Theorems related to convex sets
	Tutorial-3
	Tutorial-4
	<u>Term III:</u> (04 Lectures + 02 Tutorials)
	Lecture 15: Concept of Hyperplanes
	Lecture 16: Different examples of Hyperplanes
	Lecture 17: Theorems related to Hyperplanes
	Lecture 18: Theorems related to supporting Hyperplanes,
	separating Hyperplanes
	Tutorial-5
	Tutorial-6 Doubt clearing session:

Buddhadeb Mondal	Course type: Mathematics (Honours)	Term I: (07 Lectures + 02 Tutorials)
	Discipline Specific Elective	Lecture 1: Introduction of number theoretic functions with examples
	Paper- DSE3T	Lecture 2: Sum and number of divisors
	Number Theory:	Lecture 3: Totally multiplicative functions
	No of Classes (Hour) per week: 2	Lecture 4: Definition and properties of the Dirichlet product
	Unit-II: Number Theoretic	Lecture 5: The Mobius Inversion formula, the greatest integer function
	Function : (Marks- 20)	Lecture 6: Algebra of μ -function and greatest integer function
	Number theoretic functions,	Lecture 7: Euler's phi-function
	sum and number of divisors,	Tutorial-1
	totally multiplicative	Tutorial-2
	functions, definition and	
	properties of the Dirichlet	
	product, the Mobius	<u>Term II:</u> (06 Lectures + 02 Tutorials)
	Inversion formula, the	
	greatest integer function,	Lecture 8: Euler's theorem, reduced set of residues
	Euler's phi-function, Euler's	Lecture 9: Some properties of Euler's phi-function
	theorem, reduced set of	Lecture 10: Order of an integer modulo n, primitive roots for
	residues, some properties of	primes
		Lecture 11: Examples over primitive roots and indices
	Euler's phi-function.	Lecture 12: Composite numbers having primitive roots,
	Unit III. Que ductie	Euler's criterion
	Unit-III: Quadratic	Lecture 13: The Legendre symbol and its properties
	Reciprocity : (Marks- 19)	Tutorial-3
		Tutorial-4
	Order of an integer modulo n,	
	primitive roots for primes,	<u>Term III:</u> (05 Lectures + 02 Tutorials)
	composite numbers having	
	primitive roots, Euler's	Lecture 14: Quadratic reciprocity with examples
	criterion, the Legendre	Lecture 15: Quadratic congruence with composite modulo
	symbol and its properties,	Lecture 16: Public key encryption, RSA encryption and
	Quadratic reciprocity,	decryption
	quadratic congruence with	Lecture 17: Solution of the equation $x^2 + y^2 = z^2$
	composite modulo, Public	Lecture 18: Fermat's Last theorem
	key encryption, RSA	Tutorial-5
	encryption and decryption,	Tutorial-6
	the equation $x^2 + y^2 = z^2$,	
	Fermat's Last theorem	
	Course type: Mathematics	Term I: (05 Lectures + 03 Tutorials)
	(General)	
	Discipline Specific Elective	Lecture 1: Introduction of simplex method
	Paper- DSE-1B/2B/3B-T:	Lecture 2: Optimality and unboundedness
	No of Classes (Hour) per week: 2	Lecture 3: The simplex algorithm
		Lecture 4: Simplex method in tableau format
	Linear Programming:	Lecture 5: Nature of solution of a L.P.P from simplex method
	Theory of simplex method,	Tutorial-1
	optimality and	Tutorial-2
	unboundedness, the simplex	Tutorial-3
	algorithm, simplex method in	
	tableau format, Introduction	<u>Term II:</u> (05 Lectures + 02 Tutorials)
	to artificial variables, two-	
	phase method, Big-M method	Lecture 6: Introduction of artificial variables
	and their comparison.	Lecture 7: Two-phase method
	Duality, formulation of the	Lecture 7: 1 wo-phase method Lecture 8: Big-M method
	dual problem, primal- dual	Lecture 9: Algebra of two-phase method and Big-M method
	and proceeding primiter duri	Lecture 7. Argeora or two-phase method and Dig-M method

relationships, economic interpretation of the dual.	Lecture 10: Their comparison Tutorial-4 Tutorial-5 <u>Term III:</u> (07 Lectures + 02 Tutorials)
	Lecture 11: Introduction of Duality Lecture 12: Formulation of the dual problem Lecture 13: Primal- dual relationships Lecture 14: Solution of primal using dual problem Lecture 15: Solution of dual using primal problem Lecture 16: Economic interpretation of the dual Lecture 17: Applications Tutorial-6 Tutorial-7