Teaching Plan Department of Chemistry Session 2023-24 Odd Semester

Teaching Plan – 2023-24 (Odd semester)

Dr. Gagan Chandra Mandal

Semester III			
Syllabus	CC-6: Inorganic Chemistry II Chemical Bonding-II		
Allotted	Allotted CC 6 P: INORGANIC CHEMISTRY-II Quantitative Estimations (Prac)		
	<u> </u>		
	Lecture	Topics to be covered	
	N0	Course and Introduction of sime taxis	
	01	Course outcome and introduction of given topic	
	02	<i>Ionic bond:</i> General characteristics, types of ions and size effects	
	03	Radius ratio rule and its application and limitations	
	04	Packing of ions in crystals	
	05	Born-Landé equation with derivation and importance of Kapustinskii expression for lattice energy	
	06	Madelung constant, Born-Haber cycle and its application	
	07	Discussion about solvation energy	
	08	Defects in solids	
	09	Solubility energetics of dissolution process	
СС-6Т	10	Covalent bond: Polarizing power and polarizability	
	11	Ionic potential, Fazan's rules. And it's application	
	12	Lewis structures, formal charge. Valence Bond Theory	
	13	The hydrogen molecule (Heitler-London approach)	
	14	Directional character of covalent bonds, hybridizations, equivalent and nonequivalent hybrid orbitals	
	15	Bent's rule, Dipole moments	
	16	VSEPR theory, shapes of molecules and ions containing lone pairs and bond pairs	
	17	Assignments and problem discussion	
	11	Assignments and problem discussion	
Semester V			
Syllabus	CC-11: I	norganic Chemistry - IV	
Allotted	C11P: Chromatography and Spectrophotometry		
	01	Course outcome	
C11T	02	General discussion about transition elements	
	03	General comparison of 3d, 4d and 5d elements	
	04	Discussion about electronic configuration and oxidation states	
	05	Redox properties of transition elements	
	06	Coordination chemistry	
	07	Coordination chemistry of about transition elements	
	08	Problem solving	
	09	Problem solving	

Teaching Plan - 2023-24 (Odd semester)

Prasanna Kumar Duley Department of chemistry

C5P: Physical Chemistry-II	
iter-	
rties	
and	
una	
of	
here	
with	
NIUI	
4.1.1.1	
tion	
ther	
ure;	
mic	
s of	
king	
for	
erm	
ium	
K _P ,	
rent	
e.g.	
with	
ı	
sing	
0	
mic	
f an	
and	
unu	
<u>)n</u>	

	15	Mixing properties of ideal solutions, chemical potential of a
		component in an ideal solution, Choice of standard states of solids
		and liquids
	16	Wave-particle duality, light as particles, photoelectric and
		Compton effects;
	17	electrons as waves and the de Broglie hypothesis; Uncertainty
		relations (without proof)
	18	Schrodinger time-independent equation:
	19	nature of the equation acceptability conditions imposed on the
		wave functions and probability interpretations of wave function
	20	Elementary concepts of operators, eigenfunctions and eigenvalues.
		Linear operators; Commutation of operators
	21	commutator and uncertainty relation: Expectation value:
		Hermitian operator; Postulates of Quantum Mechanics
	22	Particle in a box: Setting up of Schrodinger equation for one-
		dimensional box and its solution. Comparison with free particle
		eigenfunctions and eigenvalues.
	23	Properties of PB wave functions (normalisation, orthogonality,
		probability distribution)
	24	Expectation values of x, x^2 , p_x and p_x^2 and their significance in
		relation to the uncertainty principle
	25	Extension of the problem to two and three dimensions and the
		concept of degenerate energy levels
	26	Simple Harmonic Oscillator: setting up of the Schrodinger
		stationary equation
	27	energy expression (without derivation), expression of wave
		function for $n = 0$ and $n = 1$ (without derivation) and their
		characteristic features
	28	
		Semester III
	1	
Syllabus	GE-3: Pł	nysical Chemistry-II
allotted	GE-3: Ph	ysical Chemistry-II
		1
	Lecture	Topics to be covered
	No	
	1	Intensive and extensive variables; state and path functions;
		isolated, closed and open systems; zeroth law of thermodynamics
	2	Concept of heat, work, internal energy and statement of first law;
		enthalpy, H; relation between heat capacities
	3	calculations of q, w, U and H for reversible, irreversible and free
		expansion of gases Standard states
	4	Heats of reaction; enthalpy of formation of molecules and ions and
	_	enthalpy of combustion and its applications
	5	Laws of thermochemistry; bond energy, bond dissociation energy
		and resonance energy from thermochemical data

	6	Kirchhoff's equations and effect of pressure on enthalpy of
		reactions, Adiabatic flame temperature; explosion temperature
		Statement of the second law of thermodynamics
	7	Concept of heat reservoirs and heat engines; Carnot cycle, Physical
		concept of Entropy. Carnot engine, refrigerator and efficiency
	8	Entropy changes of systems and surroundings for various
	0	processes and transformations. Auxiliary state functions (G and A)
		and Criteria for spontaneity and equilibrium
	9	Chemical Equilibrium- introduction Thermodynamic conditions
	-	for equilibrium degree of advancement
	10	Fauilibrium constant and standard Gibbs free energy change
	11	Definitions of KP KC and KX and relation among them
	11	van't Hoff's reaction isotherm isobar and isochare from different
	12	standard states:
	12	Statuard States,
	15	sinting of equilibrium due to change in external parameters e.g.,
	14	temperature and pressure
	14	variation of equilibrium constant with addition to inert gas; Le
		Chatelier's principle
		Semester V
	DOD17	
Syllabus	DSEIT: A	Advanced Physical Chemistry
allotted		
	Lecture	Topics to be covered
	No	
	1	Crystal Structure – Introduction, Bravais Lattice and Laws of Crystallography Types of solid Bragg's law of diffraction
	2	Laws of crystallography (Hajjy's law and Steno's law):
	-	Permissible symmetry axes in crystals
	3	Lattice, space lattice, unit cell, crystal planes, Bravais lattice,
		Packing of uniform hard sphere, close packed arrangements (fcc
		and hcp);
	4	Tetrahedral and octahedral voids. Void space in p-type, F-type and
		I-type cubic systems
	5	Distance between consecutive planes [cubic, tetragonal and
		orthorhombic lattices];
	6	Indexing of planes, Miller indices; calculation of d _{hkl} Relation
		between molar mass and unit cell dimension for cubic system
	7	Bragg's law (derivation), application
	8	Determination of crystal structure: Powder method
	9	Structure of NaCl and KCl crystals
	10	Statistical Thermodynamics – Introduction Configuration
	10	Macrostates microstates and configuration
	11	calculation with harmonic oscillator variation of W with F:
	**	equilibrium configuration
	12	Boltzmann distribution: Thermodynamic probability entropy and
	14	probability
	13	Boltzmann distribution formula (with derivation)
1		A reliestions to honometric distribution. Doutition function
	14	ADDUCATIONS TO DATOMETRIC DISTRIBUTION. PARTITION TUNCTION

15	concept of ensemble - canonical ensemble and grand canonical ensembles
16	Partition function: molecular partition function and thermodynamic properties
17	Maxwell's speed distribution; Gibbs' paradox
18	Specific heat of solid: Coefficient of thermal expansion, thermal compressibility of solids
19	Dulong –Petit's law; Perfect Crystal model
20	Einstein's theory – derivation from partition function, limitations;
21	Debye's T3 law – analysis at the two extremes
22	3rd law: Absolute entropy, Plank's law, Calculation of entropy,
23	Adiabatic demagnetization: Approach to zero Kelvin
24	adiabatic cooling, demagnetization, adiabatic demagnetization – involved curves
25	Polymers: Classification of polymers, nomenclature, Molecular
	forces and chemical bonding in polymers, Texture of Polymers
26	Criteria for synthetic polymer formation; Relationships between
	functionality, extent of reaction and degree of polymerization
27	Mechanism and kinetics of step growth polymerization
28	Mechanism and kinetics of copolymerization; Conducting polymers

-

Semester V		
Syllabus allotted	DSE-1T: Polymer Chemistry	
	Lecture	Topics to be covered
	No	
	1	Nature and structure of polymers – Structure Property relationships.
	2	Mechanism and kinetics of step growth, radical chain growth, ionic
		chain (both cationic and anionic)
	3	coordination polymerizations
	4	Mechanism and kinetics of copolymerization
	5	polymerization techniques.
	6	Recap and discussion.
	7	Questions and answer discussion.
	8	
	9	
	10	
	11	
	12	
	13	
	14	

Teaching Plan - 2023-24 (Odd semester) DR. INDRANIL CHAKRABORTY

Semester-I		
Syllabus allotted		MJ-1(Organic chemistry)
	Lecture No	Topics to be covered
	01	Introduction to organic chemistry
	02	Course outcome of Stereochemistry
	03	Basics of hybridization and drawing of orbital picture
	04	Concepts and requirement of different projection formula
N/TT 1	05	Concept of Isomerism
IVIJ-1	06	Optical activity of chiral compounds
	07	Optical rotation, specific rotation and molar rotation; racemic
	08	Concepts of racemisation. Process of racemisation through cationic
	09	Racemisation through radical intermediates and through reversible
		Concerts of Pesclution of recerting medifications
	10	Procedure of resolution of onticelly active acids & bases
	10	Procedure of resolution of optically active actus & bases.
	12	Different examples on resolution and racemisation of optically active
	12	Compounds.
	13	Definition and examples of optical purity and enantiometric excess.
	14	Problem discussion
	15	Problem discussion
	10	Problem discussion
	1,	
	SE	C-1: COSMETICS CHEMISTRY
	PR1	Introduction to Lab safety and use of instruments
	PR2	Preparation of Talcum Powder
	PR3	Preparation of Shampoo (Eggless)
SEC 1	PR4	Preparation of Shampoo (with egg)
	PR5	Preparation of nail polish
	PR6	Preparation of nail polish remover
	PR7	Preparation of hair remover
	PR8	Preparation of lip stick
	PR9	Practice
	PR10	Practice
	PR11	Practice
	PR12	Practice
	PR13	Practice
	PR14	Practice
		SEMESTER V
Syllabus		
Allotted	DSE 217	ANALY IICAL METHODS IN CHEMISTRY

	01	Chromatography: Classification, principle and efficiency of the
		technique.
	02	Mechanism of separation: adsorption, partition & ion exchange.
	03	Development of chromatograms: frontal, elution and
		displacement methods; Qualitative and quantitative aspects of
		chromatographic methods of analysis.
	04	Concepts, procedure and use of IC.
	05	Concepts, procedure and use of GLC.
	06	Concepts, procedure and use of GPC.
	07	Concepts, procedure and use of TLC.
	08	Concepts, procedure and use of HPLC.
	09	Stereoisomeric separation and analysis: Measurement of optical rotation,
DSE 2 T	10	Enantiomeric excess (ee) /diastereomeric excess (de)
	11	Ratios and determination of enantiomeric composition using
		NMR, Chiral solvents and chiral shift reagents.
	12	Chiral chromatographic techniques using chiral columns (GC
		and HPLC).
	13	Problem discussion
	14	Problem discussion
	15	Problem discussion
		Semester V
		B.Sc General
Syllabus		POLYMER CHEMISTRY
Allotted		DSE1 T
	Lecture	Topics to be covered
	01	Course outcome
	02	Molecular weight distribution and its significance. Different
		types of molecular weight of polymers, Mn , Mw , etc
	03	Determination of molecular weight of polymers
		(<i>Mn</i> , <i>Mw</i> , etc) by end group analysis & viscometry
	04	Determination of molecular weight of polymers, light scattering
	04	Determination of molecular weight of polymers, light scattering and osmotic pressure methods.
	04	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and
	04	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg
	04 05 06	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass
	04 05 06	 Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg).
	04 05 06 07	 Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter,
	04 05 06 07 08	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and
	04 05 06 07 08	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions,
	04 05 06 07 08 09	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory.
	04 05 06 07 08 09 10	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory. Lower and Upper critical solution temperatures.
	04 05 06 07 08 09 10 11	Determination of molecular weight of polymers, light scattering and osmotic pressure methods. Polydispersity index., Glass transition temperature (Tg) and determination of Tg Free volume theory, WLF equation, Factors affecting glass transition temperature (Tg). Polymer Solution, polymer solubility, Solubility parameter, Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions, Flory- Huggins theory. Lower and Upper critical solution temperatures. Problem discussion

Teaching Plan-2023-2024 (Odd Semester)

Kuheli Pramanik

Semester I			
Syllabus	CEMHMJ101(Theory): Physical Properties, Aromaticity		
allotted	CEMHMJ101(Practical): Separation, Determination of Boiling point,		
anoticu	Identification of Pure Organic Compounds		
No of	CEMHMJ101(Theory): 01		
Classes	CEMHMJ101(Practical): 03		
(Hour)			
per week			
	Lecture 1: Course outcome and introduction on Physical Properties of compounds.		
	Lecture 2: influence of hybridization on bond properties: bond dissociation energy		
	(BDE) and bond energy.		
	Lecture 3: bond distances, bond angles Lecture 4: concept of bond angle strain (Baever's strain theory)		
	Lecture 5: melting point/boiling point and solubility of common organic		
	compounds in terms of covalent & non-covalent intermolecular forces.		
	Lecture 6: polarity of molecules and dipole moments		
	Lecture 7: relative stabilities of isomeric hydrocarbons in terms of heat of		
	hydrogenation, heat of combustion and heat of formation.		
Tasahing	Lesture 9. Ilitabella sulla for constitute en to [10] constant (industries		
Plan	Lecture 8: Huckel's rules for aromaticity up to [10]-annulene (including monopuclear beterocyclic compounds up to 6-membered ring)		
I Iall	mononuclear neterocyclic compounds up to o-memocred ring).		
	Lecture 9: concept of antiaromaticity and homoaromaticity, non-aromatic		
	molecules.		
	Lecture10: Frost diagram.		
	Lecture 11: elementary idea about α and β ; measurement of delocalization energies		
	In terms of β for buta-1,3-diene, cyclobutadiene, hexa-1,3,5-triene and benzene.		
	compounds		
	Compounds.		
	Lecture 13. Discussion of questions on Aromaticity.		
	Lecture 14: Tutorial (Discussion on VU previous year questions)		
	Semester III		
Syllabus	C7T: Aromatic Substitution		
allotted	C7P: Qualitative Analysis of Single Solid Organic Compounds		
No of	C7T. 1		
Classes	C/1: 1 C7D: 3		
(Hour)	C/1.5		
per week			
	Lecture 1: Course outcome and introduction on related topics		
— 11	Lecture 2 : What is Electrophilic Aromatic Substitution, Its mechanisms and		
Teaching	evidence in favour of it.		
Plan	Lecture 3: orientation and reactivity of reactions.		
	Lecture 4: nitration, nitrosation reaction.		
	Lecture 5: suitonation, nalogenation.		

	Lecture 6: Friedel-Crafts reaction.
	Lecture 7: one-carbon electrophiles reactions: chloromethylation, Gatterman-
	Koch.
	Lecture 8: Gatterman, Houben-Hoesch, Vilsmeier-Haack
	Lecture 9: Reimer-Tiemann, Kolbe-Schmidt
	Lecture 10: Ipso substitution.
	Lecture 11: Nucleophilic aromatic substitution: addition-elimination
	mechanism and evidence in favour of it.
	Lecture 12: S ₁ mechanism; cine substitution (benzyne mechanism), structure
	of benzyne.
	Lecture 13: Questions answer discussion.
	Lecture 14: Discussion on VU previous year questions
	Semester V
	C12T: Pericyclic reactions
Syllabus	C12P: A. Chromatographic Separations, B. Spectroscopic Analysis of Organic
allotted	Compounds
	DSE2P: Analytical Methods in Chemistry (lab)
No of	C12T: 1
Classes	C12P: 3
(Hour)	DSE2P: 3
per week	
	Lecture 1: Course outcome and introduction of the given topics.
	Lecture 2: What is Pericyclic reaction, different examples, classification of
	pericyclic reaction.MO orbital symmetry.
	Lecture 3: Electrocyclic reactions: Ring opening and Ring closing, its
	mechanism, Stereochemistry.
	Lecture 4. Regioselectivity of electrocyclic reaction by FMO approach
	involving 4π - and 6π -electrons (thermal and photochemical) and corresponding
	cycloreversion reactions.
	Lecture 5: Cycloaddition reactions: its mechanism, stereochemistry explanation
Teaching	through FMO approach.
Plan	
	Lecture 6: Diels-Alder reaction, Retro-Diels Alder Reaction, photochemical
	[2+2] cycloadditions.
	Lecture 7: Sigmatropic reactions: FMO approach. sigmatropic shifts and their
	Utuer. Locture 8 : [1, 3] and [1, 5] H shifts and [2, 2] shifts with reference to Claisen
	and Cope rearrangements
	Lecture 9. Questions answer discussion
	Lecture 10. Discussion on VU previous year questions
	Lecture 11: Discussion on VU previous year questions
	Lecture III Discussion on VO provious year questions

Semester V(General)			
Syllabus	DSE-1T: Properties of Polymers (Physical, thermal, Flow & Mechanical		
allotted	Properties).		
No of Classes	DSE-1T: 01		

(Hour)	
per week	
Teaching Plan	 Lecture 1: Course outcome and introduction of the given topics. Lecture 2: Brief introduction to preparation, structure, properties, and application of the following polymers: polyolefins, Lecture 3: Brief introduction to preparation, structure, properties, and application of the following polymers: polystyrene and styrene copolymers, Lecture 4: Brief introduction to preparation, structure, properties, and application of the following polymers: poly (vinyl chloride) and related polymers, Lecture 5: poly (vinyl acetate) and related polymers, acrylic polymers Lecture 6: Brief introduction to preparation, structure, properties, and application of the following polymers: fluoro polymers, polyamides, and related polymers. Lecture 7: Brief introduction to preparation, structure, properties, and application of the following polymers: Phenol formaldehyde resins (Bakelite, Novalac), polyurethanes Lecture 8: Brief introduction to preparation, structure, properties, and application of the following polymers: silicone polymers, polydienes, Polycarbonates Lecture 9: Brief introduction to preparation, structure, properties, and application of the following polymers: conducting Polymers, polydienes, Polycarbonates Lecture 9: Brief introduction to preparation, structure, properties, and application of the following polymers: conducting Polymers, polydienes, Polycarbonates Lecture 9: Brief introduction to preparation, structure, properties, and application of the following polymers: conducting Polymers, polydienes, Polycarbonates Lecture 9: Brief introduction to preparation, structure, properties, and application of the following polymers: Conducting Polymers, [polyacetylene, polyaniline, poly (p-phenylene sulphide polypyrrole, polythiophene)] Lecture 10: Questions answer discussion. Lecture 11: Discussion on VU previous year questions

Teaching Plan – 2023-24 (Odd semester)

DR. FORID SAIKH

Semester I					
Syllabus allotted	MJ-1(Organic chemistry)				
	Lecture No	Topics to be covered			
	01	Bonding geometries of carbon compounds			
	02	3D representation of molecules			
	03	tetrahedral nature of carbon and concept of asymmetry			
N / T 1	04	Fischer, sawhorse, flying-wedge and Newman projection			
IVIJ-1		formulae and their inter translations			
	05	symmetry elements and point groups ($C_{\alpha\nu}$, C_{nh} , $C_{n\nu}$, C_n , $D_{\alpha h}$, D_{nh} , D_{nd} , D_n , S_n (C_s , C_i)			
	06	symmetry elements and point groups ($C_{\alpha\nu}$, C_{nh} , $C_{n\nu}$, C_n , $D_{\alpha h}$, D_{nh} , D_{nd} , D_n , S_n (C_s , C_i)			
	07	molecular chirality and centre of chirality; asymmetric and			
		dissymmetric molecules; enantiomers and diastereomers			
	08	concept of epimers; concept of stereogenicity,			
	chirotopicity and pseudoasymmetry				
	09	chiral centres and number of stereoisomerism: systems invaluing $1/2/2$ shirel centre			
	10	Problem discussion			
SEC-1: COSMETICS PREPARATION					
		Somostor III			
Syllabus	CC 7T . ($\mathbf{D} \mathbf{C} \mathbf{A} \mathbf{N} \mathbf{C} \mathbf{C} \mathbf{U} \mathbf{E} \mathbf{M} \mathbf{S} \mathbf{T} \mathbf{D} \mathbf{V} \mathbf{N} \mathbf{A} ddition to \mathbf{C} = \mathbf{O}$			
Allotted	CC 6 P :INORGANIC CHEMISTRY-IV Quantitative Estimations (Prac) SEC 2T : BASIC ANALYTICAL CHEMISTRY (Theory)				
	Locture	Tanias to be servered			
	No	Topics to be covered			
	01	Addition to $C=O$: structure, reactivity and preparation of carbonyl compounds			
	02	Mechanism (with evidence), reactivity, equilibrium and kinetic control;			
	03 Burgi-Dunitz trajectory in nucleophilic additions				
	04	formation of hydrates, cyano hydrins and bisulphite adduct; nucleophilic addition-elimination reactions with alcohols, thiols and nitrogen- based nucleophiles			
	05	benzoin condensation. Cannizzaro and Tischenko reactions			
	06	Reactions with ylides: Wittig and Corey-Chaykovsky reaction			
	07	Rupe rearrangement, oxidations			
CC-7 T	08	reductions: Clemmensen, Wolff-Kishner,			
	09	LiAlH4, NaBH4, MPV			
	10	Oppenauer, Bouveault-Blanc, acyloin condensation			

	11 oxidation of alcohols with PDC and PCC; periodic a				
	lead tetraacetate oxidation of 1,2-diols				
	12	Assignments and problem discussion			
	13	Assignments and problem discussion			
	01				
	01	Aerobic and anaerobic fermentation			
	02	Production of Ethyl alcohol and citric acid,			
	03	Production of Penicillin, Cephalosporin			
	04	Production of Chloromycetin and Streptomycin			
	05	Production of Lysine, Glutamic acid			
	06	Production of Vitamin B2, Vitamin C			
	07	Production of Vitamin B12			
SEC 1 T	14	Problem solving			
	15	Problem solving			
		Semester V			
Syllabus	CC 12 T : Carbocycles & Heterocycles(Theory)				
Allotted	CC12P: T	CC12P: TLC & 1H NMR (Practical)			
	Lecture	Topics to be covered			
	01	Course outcome			
	02	synthetic methods include Haworth,			
		Bardhan-Sengupta, Bogert-Cook			
	03	other useful syntheses			
	04	fixation of double bonds and Fries rule			
	05	reactions (with mechanism) of naphthalene			
	06	reactions (with mechanism) of anthracene			
	07	reactions (with mechanism) of phenanthrene and their derivatives			
	08	Heterocyclic compounds: 5- and 6-membered rings with one			
CC 12T		heteroatom; reactivity,			
		orientation			
	09	Heterocyclic compounds: 5- and 6-membered rings with one			
		heteroatom important reactions (with mechanism) of furan			
	10	Heterocyclic compounds: 5- and 6-membered rings with one			
		heteroatom important reactions (with mechanism) of thiophene			
	11	<i>Heterocyclic compounds:</i> 5- and 6-membered rings with one			
		heteroatom important reactions (with mechanism) of pyrrole			
	12	<i>Heterocyclic compounds:</i> 5- and 6-membered rings with one			
	12	heteroatom important reactions (with mechanism) of pyridine			
	13	Heterocyclic compounds: 5- and 6-membered rings with one			
	14	neteroatom important reactions (with mechanism) of Quinoline			
	14	<i>Heterocyclic compounds:</i> 5- and 6-membered rings with one			
	15	Droblem answer			
	15	riobiem answer			

	15	Problem & solution			
	SEMESTER _III(General)				
	Theory:Organic Chemistry Practical: Organic Qualitative estimation, Quantative eastimation,				
	01	Course outcome			
	02	Chemistry of carboxylic acid and their derivatives			
	03	Chemistry of carboxylic acid and their derivatives aliphatic			
	04	Chemistry of amines and diazonium salt			
	05	Chemistry of amino acids			
	06	Chemistry of amino acids			
	07	Chemistry of amino acids			
	08	Chemistry of carbohydrates			
	09	Chemistry of carbohydrates			
	10 Chemistry of carbohydrates				
DSC 1T	11 Problem solving				
	12	Problem solving			

Teaching Plan - 2022-23 (Even semester)

DR. SUBHRA MISHRA

Semester I						
Syllabus	CEMHMJ 101: ORGANIC CHEMISTRY-(Theory) General					
allotted	Treatment of Reaction Mechanism I					
No. of	СЕМНМЈ 101: 01					
classes						
(Hour) per						
week						
	Lecture	Topics to be covered				
	No					
	01	Course outcome of the topic				
	02 Mechanistic classification: ionic, radical and (definition with example)					
	03 Type of reactions: addition, elimination and substitut					
	reactions (definition with example)					
	04 Introduction to Homolytic and heterolytic bond fissi					
	homogenic and heterogenic bond formation					
CC4T	05	Elementary ideas about electrophiles and nucleophiles with examples				
	06 Discussion on electrophilicity and nucleophilicity					
		FMO approach				
07 General introduction of react		General introduction of reaction kinetics (Order,				
	Molecularity, Transition state, Intermediate etc)					
	08	Discussion on generation, stability, structure of carbocations (using orbital picture)				
	09 Discussion on generation. stability. structure of					
	(using orbital picture)					
	10 Generation, stability, structure of carbon radicals (using orbit					
	picture)					
	11 Generation, stability, structure of carbenes (using orbit					
	12 Elementary idea on electrophilic/publicshilic helectrophilic					
	12 Elementary idea on electrophilic/nucleophilic behavior					
	13 Problems discussion					
	14 University questions discussion					
Semester III						
Syllabus	C7T: Org	ganic Chemistry-III				
allotted	C7P: Qualitative functional group analysis					
	SEC1P:Pharmaceutical Chemistry					
	GE3P:Organic Chemistry-LAB					
No. of	C7T: 1					
classes	C7P: 3					
(Hour) per	SEC1P:	3				
week	GE3 P: 2					

	Lecture 7	Topics to be covered				
	01 (Course outcome of the syllabus				
	02	Elementary ideas of Green Chemistry				
	03	Discussion about the Twelve (12) principles of green chemistry				
	04]	Discussion about the Twelve (12) principles of green chemistry				
	05] 2	Planning of green synthesis; common organic reactions and their counterparts: reactions: Aldol condensation and Friedel-Crafts reactions				
С7Т	06]	Planning of green synthesis; common organic reactions and their counterparts: reactions: Michael and Knoevenagel condensation.				
	07	Planning of green synthesis; common organic reactions and their counterparts: reactions: Cannizzaro, benzoin condensation and Dieckmann reaction				
	08 9 0 1	Substitution at sp ² carbon (C=O system): mechanism (with evidence): <i>B</i> Ac2, <i>A</i> Ac2, (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).				
	09]	Mechanism (with evidence): AAC1, AAL1 (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).				
	10	Grignard reagent; preparation and reactions (mechanism with evidence)				
	11 (Organolithiums; Gilman Cuprates preparation and reactions (mechanism with evidence)				
	12	Substitution on -COX; directed ortho metalation of arenes using organolithiums, conjugate addition by Gilman cuprates; Corey-House synthesis				
	13	Abnormal behavior of Grignard reagents; comparison of reactivity among Grignard, organolithiums and organocopper reagents				
	14] i	Reformatsky reaction; Blaise reaction; concept of <i>umpolung</i> and base-nucleophile dichotomy in case of organometallic reagents				
15 Problem discussion		Problem discussion				
	16	University questions discussion				
		Semester V				
Syllabus Allotted	C12 T: O DSE1 T:	rganic Chemistry – V Polymer Chemistry				
	Lecture	Topics to be covered				

	01	Course outcome and application of Bioorganic chemistry		
	02	Bio-molecules –Introduction		
	03	Classification structure of Amino acids		
	04	Synthesis with mechanistic details: Strecker, Gabriel,		
		acetamido malonic ester, azlactone		
	05	Synthesis with mechanistic details Bücherer hydantoin		
		synthesis, synthesis involving diketopiperazine.		
	06	Iso-electric point, zwitterions; electrophoresis, reaction		
		(with mechanism): ninhydrin reaction, Dakin-West		
CC12 T		reaction. resolution of racemic amino acids		
	07	Peptides: peptide linkage and its geometry; syntheses		
		(with mechanistic details) of		
		peptides using <i>N</i> -protection & C-protection, solid-phase		
		(Merrifield) synthesis		
	08	Peptide sequence: C-terminal and N-terminal unit		
		determination (Edman, Sanger & 'dansyl'		
	00	methods)		
	09	Partial hydrolysis; specific cleavage of peptides: use of		
	10	CNBr, Overlapping technique		
	10	Pyrimidine and purine bases (only structure &		
		nomenclature); nucleosides and nucleotides		
	11	Machaniam for acid actalyzed bydrolyze of pyclossides		
	11	(both pyrimidine and purine types): comparison of		
		alkaline hydrolysis of DNA and RNA		
	12	Elementary idea of double belical structure of		
	12	DNA (Watson-Crick model); complimentary base–		
		pairing in DNA		
	16	Assignment and problem discussion		
	17	University questions discussion		
Syllobus	DSF1 T	La Dolumon Chomistru		
Allottod	DSELLI	. I orymer Chemistry		
No of classes	DSE1 T	• 1		
(Hour) per	DOLLI	• 1		
week				
	01	Course outcome		
	02	Introduction to the polymer Chemistry		
DSE1 T	03	Classification and Characterisation of Polymer		
	04	Structure of polymer		
	05	Functionality and its importance: Criteria for synthetic polymer		
	0.6	formation.Classification of polymerization processes		
	05	Structure –Function relationship		
	07	Problem solving		
	Vð	riouem solving		

Teaching Plan – 2023-24 (Odd semester)

Dr. Sumit Kumar Ray

		Semester I			
Syllabus	MJ-1(Organic chemistry)				
allotted	MJ1P: Organic Chemistry Lab-1				
	Lecture	Topics to be covered			
	No				
	01	Course outcome and Introduction of given topic			
	02	Valence Bond Theory: concept of 18ybridization, shapes of			
MJ-1		molecules, resonance (including hyperconjugation)			
	03	Calculation of formal charges and double bond equivalent			
		(DBE). Prediction the structure of molecules from DBE.			
	04	Orbital pictures of bonding (sp ³ , sp ² , sp: C-C, C-N & C-O			
		systems and <i>s</i> - <i>cis</i> and <i>s</i> - <i>trans</i> geometry for suitable cases).			
	05 Electronic displacements: inductive effect, field effect,				
		mesomeric effect and their applications in organic chemistry.			
	06	Resonance: it's application in organic chemistry. Resonance			
		energy calculation for various molecules.			
	07	Bond polarization and bond polarizability: Application of dipole			
		moment.			
	08	Discuss the concept of electromeric effect; steric effect and steric			
		inhibition of resonance. Their applications in organic chemistry.			
	09	MO theory: qualitative idea about molecular orbitals, bonding			
		and antibonding interactions, idea about σ , σ^* , π , π^* , n – Mo			
	10	Basic idea about Frontier Mos (FMO); concept of HOMO,			
		LUMO and SOMO; interpretation of chemical reactivity in terms of FMO			
	interactions11Sketch and energy levels of π Mos of i) acyclic p orbital s (C=C, conjugated diene, triene, allyl and pentadienyl system				
	12 Sketch and energy levels of π Mos of i) cyclic p				
		(neutral systems: [4], [6]-annulenes; charged systems: 3-,4-,5-			
	membered				
		ring systems) etc			
	13	Problem discussion			
	14	Class test			
	1	Semester III			
Syllabus	CC-6T :	Inorganic Chemistry II Chemical Bonding-II			
Allotted	CC 6 P :	INORGANIC CHEMISTRY-II Quantitative Estimations (Prac)			
	CC-7T :	Organic Chemistry III : Chemistry of Alkenes and Alkynes.			
	SEC1T:	Pharmaceutical Chemistry			
	-				
	Lecture Topics to be covered				
	No				
	01	Course outcome and Introduction of given topic			

	02	Discussion about concept of molecular orbital bonding (The
	02	approximations of the theory Linear combination of atomic
		approximations of the theory, Effect combination of atomicorbitals (I CAO)) (elementary pictorial approach)
	02	Formation of signa and ni hands and dalta interaction multiple
	03	Formation of signa and problems and delta interaction, multiple
		LUMO, Orbital mining
	0.4	LUMO. Orbital mixing,
	04	MO diagrams of H_2 , L_{12} , Be_2 , B_2 and their bond energies, bond lengths and magnetic moments
	05	MO diagrams of C ₂ , N ₂ , O ₂ , F ₂ and their ions wherever possible
	06	Heteronuclear molecular orbitals of CO, NO, NO ⁺ , CN ⁻ , HF
	07	Sketch and energy levels of Mos of BeH ₂ , CO ₂ and H ₂ O
CC-6T	08	Internal class test
	09	Discussion about bond properties: bond orders, bond lengths
	10	Assignments and problem discussion
	11	Assignments and problem discussion
	1	
	1_	
	Lecture	Topics to be covered
	No	
	01	Course outcome and Introduction of given topic
	02	Drug discovery, design and development
SECIT	03	Basic Retrosynthetic approach for design of drugs.
	04	Synthesis of the representative drugs of the following classes:
		analgesics agents, antipyretic agents
	05	Synthesis of antiinflammatoryagents (Aspirin, paracetamol,
		lbuprofen); antibiotics (Chloramphenicol); antibacterial and
		antifungal agents (Sulphonamides; Sulphanethoxazol,
		Sulphacetamide, Trimethoprim)
	06	Discussion about antiviral agents (Acyclovir), Central Nervous
		System agents (Phenobarbital, Diazepam), Cardiovascular
		(Glyceryl trinitrate), antilaprosy (Dapsone),
	07	Discussion about HIV-AIDS related drugs (AZT-Zidovudine).
	08	Problem discussion
	09	Class test
	01	Course outcome and Introduction of given topic
	02	Heat of hydrogenation, Stability and reactivity of alkenes and
	02	alkynes.
	03	Addition to C=C: mechanism (with evidence wherever
		applicable), reactivity and regioselectivity (Markownikoff and
	0.4	anu-warkownikon additions)
	04	Stereoselective reactions: hydrogenation, halogenations,
		iouoracionisation, nyuronalogenation, nyuration,
	05	Oxymercuration-demercuration
	05	nyuroboration-oxidation and application in organic synthesis
	06	Epoxidation reactions and epoxide ring opening and its
		application in organic synthesis.

CC-7T	07	syn and anti hydroxylation and ozonolysis reaction			
	08	Addition of singlet and triplet carbenes, Simmon Smith reactions			
	09	Electrophilic addition to diene (conjugated dienes and allene) and addition reactions via radical mechanism			
	10	HBr addition; mechanism of allylic and benzylic bromination in competition with brominations across C=C; and use of NBS			
	11	Birch reduction of benzenoid aromatics			
	12	Interconversion of E - and Z - alkenes; contra-thermodynamic isomerization of internal alkenes.			
	13	Addition to C=C (in comparison to C=C): mechanism, reactivity, regioselectivity (Markownikoff and anti Markownikoff addition) and stereoselectivity			
	14	Hydrogenation, halogenations, hydrohalogenation, hydration, oxymercuration-demercuration, hydroboration-oxidation reactions of alkyne			
	15	Dissolving metal reduction of alkynes (Birch reduction)			
	16	Reactions of terminal alkynes by exploring its acidity and interconversion of terminal and non-terminal alkynes.			
	17	Problem solving			
	18	Problem solving			
		Semester V			
Syllabus					
Allotted	CC-121:	CC12P: TLC & 1H NMR (Practical)			
	CC12P	ILU & IH NMK (Practical)			
	$DSE 1 \cdot A$	norganic Unemistry - IV Advanced Physical Chemistry			
	L octuro	I. Advanced Filysical Chemisury			
		Topies to be asymptot			
		Topics to be covered			
	01 02	Topics to be covered Course outcome Course loss outcome			
	01 02 02	Topics to be covered Course outcome General concept about carbohydrates chemistry Managagaharidaan Aldagag up to Courbonau structure of D			
	01 02 03	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D-glucose & D fructose (configuration & conformation)			
	01 02 03 04	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and			
	01 02 03 04	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)			
	01 02 03 04 05	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations:			
	01 02 03 04 05	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)			
	01 02 03 04 05 06	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in			
	01 02 03 04 05 06	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)			
CC 12T	01 02 03 04 05 06 07	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)Fischer glycosidation, osazone formation, bromine water			
CC 12T	Decture 01 02 03 04 05 06 07	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)Fischer glycosidation, osazone formation, bromine water oxidation, HNO3 oxidation of D-glucose & D-fructose.			
CC 12T	01 02 03 04 05 06 07 08	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)Fischer glycosidation, osazone formation, bromine water oxidation, HNO3 oxidation of D-glucose & D-fructose.Selective oxidation of terminal –CH2OH of aldoses and reduction to alditols			
CC 12T	01 02 03 04 05 06 07 08 09	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)Fischer glycosidation, osazone formation, bromine water oxidation, HNO3 oxidation of D-glucose & D-fructose.Selective oxidation of terminal –CH2OH of aldoses and reduction to alditolsLobry de Bruvn-van Ekenstein rearrangement			
CC 12T	01 02 03 04 05 06 07 08 09 10	Topics to be coveredCourse outcomeGeneral concept about carbohydrates chemistryMonosaccharides: Aldoses up to 6 carbons; structure of D- glucose & D-fructose (configuration & conformation)Ring structure of monosaccharides (furanose and pyranose forms)Haworth representations and non-planar conformations; anomeric effect (including stereoelectronic explanation)Mutarotation and epimerization reactions (mechanisms in relevant cases)Fischer glycosidation, osazone formation, bromine water oxidation, HNO3 oxidation of D-glucose & D-fructose.Selective oxidation of terminal –CH2OH of aldoses and reduction to alditolsLobry de Bruyn-van Ekenstein rearrangementStepping-up (Kiliani-Fischer method) and stepping-down			

	11	End-group-interchange of aldoses; acetonide (isopropylidene)			
		and benzylidene protections; ring-size determination			
	12	Fischer's proof of configuration of (+)-glucose			
	13	Disaccharides: Glycosidic linkages, concept of glycosidic bond			
		formation by glycosyl donor-acceptor; structure of sucrose,			
		inversion of cane sugar. heteroatom important reactions (with			
		mechanism) of Quinoline			
	14	Polysaccharides: starch (structure and its use as an indicator in			
		titrimetric analysis).			
	15	Problem answer			
	15	Problem & solution			
	01	Course outcome			
	02	Valence Bond Theory and it's application			
	03	Limitation of VBT			
	04	Elementary Crystal Field Theory: splitting of d ⁿ configurations in			
		octahedral, square planar and tetrahedral fields			
	05	Crystal field stabilization energy (CFSE) in weak and strong			
		fields; pairing energy			
	06	Spectrochemical series. Jahn- Teller distortion			
	07	Discussion about Octahedral site stabilization energy (OSSE)			
	08	Application of CFT			
0115	09	Metal ligand bonding (MO concept, elementary idea), sigma-			
СПТ		and pi-bonding in octahedral complexes			
	10	Qualitative pictorial approach for Metal ligand bonding and			
		their effects on the oxidation states of transitional metals			
	12	Problem solving			
	13	Problem solving			

Teaching Plan-2023-24 (Odd semester)

Kalyan Sur

Department of Chemistry

Semester-V(5H)			
Syllabus allotted	LANTHANOIDS AND ACTINOIDS		
	Lecture No	Topics to be covered	
	01	General Comparison on Electronic Configuration.	
INORCANIC	02	Oxidation states, Colour.	
CHEMISTDY	03	Spectral and magnetic properties.	
CHEWIISIKI	04	Lanthanide contraction.	
	05	Separation of lanthanides (ion-exchange methods only).	
	06	Previous Year Ouestion (VU, CU).	
	07	Frequently asked questions, IIT-JAM.	
	08	Multiple choice question	
		manipre enorce questioni	
		Semester-V(5G)	
Syllabus allotted	Lecture No	DSE-1 POLYMER CHEMISTRY	
CRYSTALLISATION	01	Determination of Crystalline.	
AND	02	Melting point and degree of crystallinity.	
CRYSTALLINITY	03	Morphology of crystallinity polymer.	
	04	Factors affecting crystalline melting point.	
	05	Most probable question answers.	
	06	Question & Answer Discussion.	
SEMESTER-III(GENERIC)			
Syllabus Allotted	Lacture No	GE3T EQUILIBRIA, CARBONYL	
	Lecture No	COMPOUNDS	
IONIC EQUILIBRIUM	01	Strong, moderate and weak electrolytes, factor	
		affecting degree of ionization.	
	02	Ionization constant and ionic product of water.	
	03	Ionization of weak acids and bases, pH scale,	
		common ion effect.	
	04	Salt hydrolysis-calculation of hydrolysis constant.	
	05	Degree of hydrolysis and pH for different salts; Buffer solution.	

principle.

06

Solubility and solubility product of sparingly soluble salts-applications of solubility product

	07	Aldehydes and Ketones (aliphatic and aromatic):
CARBONYL		(Formaldehyde, acetaldehyde, acetone and
COMPOUNDS		benzaldehyde).
	08	Preparation: from acid chlorides, from nitriles and from
		Grignard reagents: general properties of aldehydes and
		ketones.
	09	Reactions: with HCN, ROH, NaHSO3, NH2-G
		iodoform test: aldol condensation (with mechanism)
	10	Cannizzaro reaction (with mechanism). Wittig
	10	reaction benzoin condensation: Clemmensen
		reduction.
	11	Wolff- Kishner reduction and Meerwein- Pondorff-
		Verley (MPV) reduction.
	12	Question & Answer discussion
	13	PYQ'S, MCQ'S, FAQ'S
	SEN	MESTER-III
	B.	Sc General
Syllabus Allotted	DSC-3T ELEC	CTROCHEMISTRY, PHASE
	EQILIBRIUM	
	Lecture	Topics to be covered
	01	Phases, components and degrees of freedom of a
		system.
	02	Criteria Of Phase Equilibrium. Gibbs Phase Rule
		and Its Thermodynamic Derivation.
PHASE	03	Derivation of Clausius - Clapeyron equation and
EQUILIBRIUM		its importance in phase equilibria.
&	04	Phase diagrams of one-component systems (water
EI ECTROCHEMISTRY		and Supplur) and two component systems involving
ELECTROCHEMISTRY	05	congruent and incongruent melting points (lead
	05	silver FeCl3-H2O and Na-K only)
	06	Reversible and irreversible cells. Concept of EMF
		of a cell.
	07	Measurement of EMF of a cell. Nernst equation and
		its importance. Types of electrodes.
		Electrochemical series.
	08	Thermodynamics of a reversible cell, calculation of
		thermodynamic properties: AG, AH and AS from
		EMF data.
	09	Calculation of equilibrium constant from EMF data.
		Concentration cells with transference and without
		transference.
	10	Previous year question solved.
	11	MCQ'S & PYQ'S
	12	FAQ'S

SEMESTER -III (CC-06)

Syllabus	C6T WEA	AK CHEMICAL FORCES, METALLIC BON
Allotted		
	Lecture	Topics to be covered
	01	Qualitative idea of valence bond and band theories.
METALIC		Semiconductors and insulators, defect in solids.
& WEAK CLASSICAL FORCES	02	van der Waals forces, ion-dipole forces, dipole-dipole interactions, induced dipole interactions, Instantaneous dipole- induced dipole interactions. Repulsive forces, Intermolecular forces.
	03	Hydrogen bonding (theories of hydrogen bonding, valence bond treatment), receptor-guest interactions, Halogen bonds.
	04	Frequently asked questions discussion.
	05	PYQ'S question discussion.

Teaching Plan - 2023-24(Odd semester) Name of the Teacher -**Sanjoy Kumar Bera** Department of chemistry

Semester III		
Syllabus	DSC3T: Conductance, Solutions.	
Allotted	GE3T: Aromatic Hydrocarbons, Organometallic Compounds, Aryl Halides,	
	Alcohols, Phenols and Ethers.	
	GE3P: Physical Chemistry-LAB + Organic Chemistry-LAB.	
	Lectur	Topics to be covered
	e	
	No	
	01	Definition of conductance, cell constant, specific and equivalent
		Conductance and their relationship.
	02	Variation of specific and equivalent Conductance with dilution,
		kohlrausch's law, numerical problem.
	03	Ostwald's dilution law, application of conductance measurement(
		Determination of solubility and ionic product of water)
	04	Definition of transport number, abnormal transport number, How
		transport number change with temperature and concentration.
	05	Principles of Hittorf's equation and moving boundary method for
		determining transport number.
DSC 3	06	Numerical problem solution.
DSC-5	07	Previous year question ans discussion.
	08	Tutorial classes.
	09	Definition of Ideal, non Ideal solutions, and Raoult's law, devia of
		Raoult's law - non ideal solution.
	10	Vapour pressure composition and temperature - composition
		curves for Ideal and non ideal solutions.
	11	Distillation of Solutions Lever rule Azeotropes critical solution
		temperature.
	12	Effect of impurities of partial miscibility of liquids.
	13	Principles of steam distillation and it's applications.
	14	Nernst distribution law and it's applications.
	15	Solvent extraction and it's applications.
	16	Question answer discussion.
	•	·
	01	Course outcome and introduction on related topics.
	02	Benzene: Preparation: from phenol, by decarboxylation, from
		acetylene, from Benzene. sulphonic acid. Reactions: electrophilic
		substitution (general mechanism); nitration (with mechanism),
		halogenations (chlorination and bromination), sulphonatio
	03	Friedel-Craft's reaction (alkylation and acylation) (up to 4
		carbons on benzene); side chain oxidation of alkyl benzenes (up to
		4 carbons on benzen.

	04	Introduction; Grignard reagents: Preparations (from alkyl and aryl
OF OT	0.5	halide); concept of umpolung; Reformatsky reaction.
GE31	05	nucleophilic aromatic substitution (replacement by -OH
		group) and effect of nitro substituent (activated nucleophilic
	06	Substitution).
	VO	reduction of aldehydes ketones carboxylic acid and esters
	07	Reactions: With sodium HX (Lucas test) oxidation (alkaline
	07	KMnO4 acidic dichromate concentrated HNO3): Oppenauer
		oxidation
	08	pinacol- pinacolone rearrangement (with mechanism) (with
		symmetrical diols only). Reimer -Tiemann reaction.
	09	Houben–Hoesch condensation, Schotten –Baumann reaction,
	10	Fries rearrangement and Claisen rearrangement.
	11	Williamson's ether synthesis; Reaction: cleavage of ethers with
	10	HI.
	12	Questions answers discussion.
	13	Previous years questions answers discussion.
	14	Unit questions answers discussion.
		Somostor V
	T	Semester V
Syllabus	DSE-1:	Polymer Chemistry. (Kinetics of Polymerization).
Syllabus Allotted	DSE-1: DSE1P:	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab).
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered
Syllabus Allotted	DSE-1: DSE1P: DSE1P: Lectur e	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives.
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation .
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation .
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02 03	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02 03	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation.
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02 03 03	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation.
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation.
Syllabus Allotted	DSE-1: 1 DSE1P: Lectur e 01 02 03 03 04 05 06	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 03 04 05 06 07	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation,cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation.
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07 08 09	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation.
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07 08 09 10	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation. Tutorial class Questions answers discussion. Parklam colving
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07 06 07 08 09 10	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation. Tutorial class Questions answers discussion. Problem solving.
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07 06 07 08 09 10	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation,cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation. Tutorial class Questions answers discussion. Problem solving.
Syllabus Allotted DSE 1T	DSE-1: 1 DSE1P: Lectur e 01 02 03 04 05 06 07 06 07 08 09 10	Polymer Chemistry. (Kinetics of Polymerization). Polymer Chemistry (Lab). Topics to be covered Introduction of polymer chemistry and its aims and objectives. Introduction, Addition polymerisation. Free radical polymerisation . Mechanism and kinetics of free radical polymerisation, cationic polymerisation. condensation polymerisation. Co-ordination polymerisation. Co- polymerisation. Mechanism and kinetics of co- polymerisation. Mechanism and kinetics of co- polymerisation. Polymerisation Techniques, solution polymerisation.y Bulk polymerisation, suspension polymerisation, Emulsion polymerisation. Tutorial class Questions answers discussion. Problem solving.

	1	Preparation of urea-formaldehyde res
	2	Determination of molecular weight by end group analysis:
		Polyethylene glycol (PEG)(OH group).
	3	Preparation of urea-formaldehyde resin
	4	Polystyrene synthesis.
	5	Revision classes.
DSE1P	6.	Viva questions discussion.

Teaching Plan - 2023-24(Odd semester) Name of the Teacher -**Laboni Giri** Department of chemistry

Semester III			
Syllabus	DSC1CT: Carboxylic acids and their derivatives, Amines and Diazonium		
Allotted	Salts		
	CC6T: Radioactivity		
	C5P: Physical Chemistry-II Lab		
	DSC1CP: Physical Chemistry-LAB + Organic Chemistry-Lab.		
Lactur Tanics to be asvared			
	P	Topics to be covered	
	No		
	01	Preparation: Acidic and Alkaline hydrolysis of esters. Reactions:	
		Hell – Vohlard - Zelin	
	02	Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)	
		Preparation: Acid chlorides, Anhydrides from acids and their inter-	
		conversion.	
	03	Preparation: Esters and Amides from acids and their inter-	
	04	Comporative study of nucleophilicity of eavy derivatives	
	04	Comparative study of nucleophinicity of acyl derivatives.	
	05	Reformatsky Reaction, Perkin condensation	
DSC-1CT	06	Numerical problem solution.	
	07	Previous year question answer discussion.	
	08	Tutorial classes.	
	09	Amines and Diazonium Salts	
		Amines (Aliphatic and Aromatic): (Upto 5 carbons)	
		Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide reaction.	
	10	Reaction:Hoffmann vs. Saytzeff elimination, Carbylamine test	
	11	Hinsberg test, with HNO2, Schotten – Baumann Reaction.	
	12	Electrophilic substitution (case aniline): nitration, bromination, Sul phonation.	
	13	Diazonium salts: Preparation: from aromatic amines.	
	14	Diazonium salts:Reactions: conversion to benzene, phenol, dyes.	
	15	Previous year question answer discussion.	
	16	Class test	
	01	Nuclear stability and nuclear binding energy.	
	02	Nuclear forces: meson exchange theory.	

	03	Nuclear models (elementary idea): Concept of nuclear quantum
CC-6T	04	Nuclear Reactions: Artificial radioactivity
	05	Transmutation of elements.nuclear fission
	06	Discuss on Nuclear fusion and spallation
	07	Nuclear energy and power generation
	07	Nuclear energy and power generation.
	08	Separation and uses of isotopes
	09	Tutorial class
	10	Previous years questions answers discussion.
	11	Questions answers discussion.
	12	Unit questions answers discussion.
	13	Class test
		Semester V
Syllabus	CC11T:	Coordination Chemistry-II
Allotted	DSE1T : Polymer solution	
	Lectur	Topics to be covered
	e	
	0.4	
	01	VB description and its limitations.
	01 02	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields.
	01 02 03	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields
	01 02 03 04	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields
	01 02 03 04 05	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy
CC11T	01 02 03 04 05 06	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion.
CC11T	01 02 03 04 05 06 07	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes
CC11T	01 02 03 04 05 06 07 08	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test
CC11T	01 02 03 04 05 06 07 08 09 10 10 10 1 2	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test Criteria for polymer solubility, Solubility parameter Thermodynamics of polymer solutions, entropy, anthology, and free
CC11T	01 02 03 04 05 06 07 08 09 10 10 1 2	VB description and its limitations. Elementary Crystal Field Theory: splitting of dn configurations in octahedral fields. Elementary Crystal Field Theory: splitting of dn configurations in square planar and tetrahedral fields crystal field stabilization energy (CFSE) in weak and strong fields Discuss on Pairing energy Spectrochemical series. Jahn- Teller distortion. Tutorial classes Previous years questions answers discussion Problem solving. Class test Criteria for polymer solubility, Solubility parameter Thermodynamics of polymer solutions, entropy, enthalpy, and free energy change of mixing of polymers solutions

	3	Flory-Huggins theory,
	4	Lower and Upper critical solution temperatures.
	5	Previous years questions answers discussion
DSE1T	6.	Unit questions answers discussion.
	7.	Class test