DEPARTMENT OF MATHEMATICS

Syllabus Distribution and Teaching Plan

Odd Semester Session: 2023-2024

Term I: Commencement of classes to 1st internal,

Term II: 1^{st} internal to 2^{nd} internal.

Term III: 2nd internal to ESE preparatory break.

<mark>Semester I</mark>

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal	Course type: Mathematics (Honours)	<u>Term I</u> (4 Lectures) Lecture 1: Illustrations of reduction formulae of the type (sin "x dx
Krishna Das	Paper- Major-1(4 year Hons.)	$\int \cos^n x dx, \int \tan^n x dx, \int \sec^n x dx. \text{If } \phi(n) = \int_0^{\frac{\pi}{4}} \tan^n x dx, \text{ show that}$
	No of Classes (Hour) per week: 1	$\phi(n) + \phi(n-2) = \frac{1}{n-1}$ and deduce the value of $\phi(5)$.
	Maior-1-: Calculus, Geometry &	Lecture 2: Find the reduction formulae of $\int (\log x)^n dx$, $\int sin^m x cos^n x dx$, $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} sin^m x cos^n x dx$. Deduce the value of
	Differential Equation	$\int_0^{\frac{\pi}{2}} \sin^8 x \cos^6 x dx$
	Unit-II: (Calculus -II): Marks: 14	Lecture 3: Reduction formula for $\int cos^m x cosnxdx$ and $\int cos^m x sinnxdx$, <i>m</i> , <i>n</i> being positive integer. If $I_{m,n} = \frac{1}{2}$
	Reduction formulae, derivations and	$\int_{0}^{\frac{\pi}{2}} \cos^{m} x \cos nx dx, \text{ prove that } I_{m,n} = \frac{m(m-1)}{m^{2} - n^{2}} I_{m-2,n}$
	illustrations of reduction formulae of the type $\int \sin nx dx$, $\int \cos nx dx$,	Lecture 4: Tutorial
	$\int \tan nx dx, \int \sec nx dx, \int (\log x)n dx,$	Term II (4 Lectures)
	equations, parameterizing a curve, arc length of a curve, arc length of parametric curves, area under a	Lecture 5: Parametric equations, Parameterizing a curve and its related problems, arc length of a curve and Arc length of parametric curves
	curve, area and volume of surface of revolution, techniques of sketching	Lecture 6: Find the length of arc of the following curves between the indicated points
	conics.	(i) $x = e^{\theta} \sin\theta$, $y = e^{\theta} \cos\theta$; $\theta = 0$ and $\frac{\pi}{2}$
		(ii) $y = \frac{1}{2}a\left(e^{\frac{x}{a}} + e^{-\frac{x}{a}}\right); x = 0 \text{ and } x = x$
		Lecture 7: Find the perimeter of the hypocloid $\left(\frac{x}{a}\right)^{\frac{2}{3}}_{2} + \left(\frac{y}{b}\right)^{\frac{2}{3}}_{2} = 1$,
		Find the length of the perimeter of the astroid $(x)^{\frac{2}{3}} + (y)^{\frac{2}{3}} = (a)^{\frac{2}{3}}$
		Lecture 8: Area under a curve and its related problems.
		Lecture 8: Find the area of the region bounded by the parabola $y^2 = 4x$ and its latus rectum, Find the area of the circle $r = 2asin\theta$.
		Term III (4 Lectures)
		Lecture 9: Area and volume of surface of revolution, Techniques of sketching conics.
		Lecture 10: Find the volume generated by revolution about x-axis of the area bounded by the loop of the curve $y^2 = x^2(2 - x)$, Find the volume and the surface area of the solid generated by revolving the cycloid $x = a(\theta + sin\theta), y = a(1 + cos\theta)$ about its base.
		Lecture 11: Tutorial
		Lecture 12: Tutorial

Dr. Pradin	(HONOURS)	Term I: (07 Lectures+ 01 Tutorial)
Kumar Gain		Lecture-1. Discussion on previous knowledge of calculus.
	No of Classes (Hour) per week: 1	Lecture-2. Hyperbolic functions.
		Lecture-3. Discussion on meaning of higher order of differential
	MJ-1T: (Unit-I) Calculus :- Marks-16	co-efficient. Method of finding higher order of differential co- efficients of some standard functions.
		Lecture-4. Discussion on Leibnitz rule and its applications.
	Hyperbolic functions, higher order derivatives, Leibnitz rule and its	Lecture-5. Applications of Leibnitz rule to the problems of type e^{ax+b} sinx, e^{ax+b} cosx, $(ax+b)^{n}$ sinx, $(ax+b)^{n}$ cosx,
	applications to problems of type	Lecture-6. Discussion on Convexity and concavity.
	$e^{ax+b}sinx$, $e^{ax+b}cosx$, $(ax+b)^nsinx$,	Lecture-7. Discussion on the problems related to Convexity and
	inflection points, envelopes.	concavity and Point of inflection.
	asymptotes, curve tracing in cartesian coordinates, tracing in	Tutorial-1. Term II: (06 Lectures + 02 Tutorial)
	polar coordinates of standard	Lecture-1. Discussion on concept of envelops.
	curves, L'Hospital's rule,	Lecture-2. Methods of finding envelops of the family of curves
	and life sciences.	of single parameter
		Lecture-3. Methods of finding envelops of the family of curves of two parameters.
		Lecture-4. Discussion on the concept of asymptotes of a curve having infinite branches
		Lecture-5. Methods of finding asymptotes of an algebraic curve.
		Lecture-6. Asymototes in polar
		Co-ordinate system
		Tutorial 2
		Term III \cdot (02 Lectures + 01 Tutorial)
		Lecture 1 Discussion on L'Hospitals Pule
		Lecture-1. Discussion on L Hospitals Rule
		Tutorial-1
Dr. Sangita	Course: B. Sc. (Hons.) Major in	Term I: (05 Lectures+ 02 Tutorials)
Chakraborty	Mathematics	Lecture-1: Introduction to the ordinary differential
	Course Type: Major-1	equation(ODE) and its applications in different fields.
	Course Code: MATHMJ101	explicit, implicit and singular solutions with examples.
	Course Title: T: Calculus, Geometry & Ordinary Differential	Lecture-3: Conditions for existence and uniqueness of the solution of an ODE with examples.
	Equation	Lecture-4: Definition and examples of first order exact differential equations and condition of exactness.
	No of Classes (Hour) per week: 1	Lecture-5: Method of solution of first order exact differential equations with problems solving.
	UNIT-4: General, particular.	Tutorial-1
	explicit, implicit and singular	Torm II. (04 Loctures 02 Tutoriols)
	solutions of a differential	<u>I erm II. (04 Lectures+ 02 I utoriais)</u>
	degree. Exact differential	Lecture-6: Concepts of integrating factors, rules to find an integrating factor.
	equations and integrating factors,	Lecture-7: Linear differential equations of first order and its
	and equations reducible to this	solution procedure.
	equation and special integrating	Lecture-8: Bernoulli's Equations and its solution techniques.
	factors and transformations.	Lecture-9: Continuation of Lecture 8.
		Tutorial 1: Tutorial 2:
		1 0101101 2.

		Term III: (05 Lectures+ 02 Tutorials)
		Lecture-10: First order higher degree equations solvable for x and
		solvable for y.
		Lecture-11: First order higher degree equations solvable for p.
		Lecture-12: Theory of singular solutions.
		Lecture-13: Discussion on special integrating factors.
		Lecture-14: Transformations applied to an ODE.
		Tutorial 1:
		Tutorial 2:
		Doubt-clearing session 1.
		Doubt-clearing session 2.
Prof. Sankar	(Honours)	Term I: (06 Lectures)
Das	(Ironours)	Lecture 1: Introduction of General equation of Second degree.
	Paper- MJ A1/B1T:	Lecture 2: Reflection properties of conics, rotation of axes.
	No of Classes (Hour) per week: 1	another with the same origin.
		Lecture 4: Metric classification of conics. Nature of the conic.
	Unit-3: Geometry (2D):	Lecture 5: Centre of a conic. Conic with centre at the origin.
		Lecture 6: Tutorial
	<u>UNIT-3</u> : Reflection properties of	Term II: (06 Lectures)
	conics, rotation of axes and second-	Lecture 7: Reduction of the equation of a conic.
	conics using the discriminant, polar	Lecture 8: Canonical form of a conic. Nature of the conic.
	equations of conics.	Lecture 9: Polar coordinates. Change from cartesian to polar system of coordinates and vice-versa.
		Lecture 10: Polar equation of a straight line, Circle.
		Lecture 11: Polar equation of a conic referred to a focus as pole.
		Lecture 12: Tutorial
		Term III: (05 Lectures)
		Lecture 13: Equation of the chord of a conic.
		Lecture 14: Tangent and normal of a conic.
		Lecture 15: Polar equation of chord of contact of tangents.
		Lecture 16: Equation of the polar of a point with respect to a conic.
		Lecture 17: Tutorial
	Course type: Mathematics	Tarm I: (12 Lactures)
	(General)	Lectures)
		Lecture 1: Infroduction of General equation of Second degree.
	Paper- 3 years MI-1	Lecture 3: Transformation from one pair of rectangular axes to
	(Geometry & Differential	another with the same origin.
	Equations)	Lecture 4: Metric classification of conics. Nature of the conic.
		Centre of a conic. Conic with centre at the origin.
	No of Classes (Hour) per week: 2	Lecture 5: Reduction of the equation of a conic.
	UNIT 3. Paflaction properties of	Lecture 6: Canonical form of a conic. Nature of the conic.
	conics, rotation of axes and second-	Lecture 7: Polar coordinates. Change from cartesian to polar system of coordinates and vice-versa
	degree equations, classification of	Lecture 8: Polar equation of a straight line. Circle.
	conics using the discriminant, polar	Lecture 9: Polar equation of a conic referred to a focus as pole.
	equations of conics. Spheres. Cylindrical surfaces. Central	Equation of the chord of a conic. Tangent and normal of a conic.
	conicoids, paraboloids, plane sections of conicoids, generating	Lecture 10: Polar equation of chord of contact of tangents. Equation of the polar of a point with respect to a conic.

lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid. UNIT-4: General, particular, explicit, implicit and singular solutions of a differential equation. First order but not first degree. Exact differential equations and integrating factors, and equations reducible to this form, linear equation, Bernoulli equation and special integrating factors and transformations.	Lecture 11: Tutorial Lecture 12: Tutorial <u>Term II</u> : (10 Lectures) Lecture 13: Equation of Spheres. Equation of a circle. Lecture 14: Sphere through a given circle. Equation of tangent plane. Lecture 15: Equation of Cylindrical surfaces. Lecture 16: Equation of right circular cylinder. Lecture 17: Equation of Central conicoids, paraboloids, ellipsoid. Lecture 18: Plane sections of conicoids. Lecture 19: Generating lines, classification of quadrics, Lecture 20: Illustrations of graphing standard quadric surfaces like cone. Lecture 21: Tutorial Lecture 22: Tutorial Lecture 23: Introduction of Ordinary differential equation of first order.
	 Lecture 24: Formation of differential equations. Lecture 25: General, particular, explicit, implicit and singular solutions of a differential equation. Lecture 26: Differential equations of first order but not first degree. Lecture 27: Exact differential equations and integrating factors, and equations reducible to this form. Lecture 28: Equations solvable by separation of variables. Lecture 30: Linear differential equations. Lecture 31: Differential equations with Clairaut's form. Lecture 32: Bernoulli differential equations. Lecture 33: Special integrating factors and transformations. Lecture 34: Tutorial Lecture 35: Tutorial
Course: B. Sc. (Hons.) Major in Mathematics Course Type: Major-1 Course Code: MATHMJ101 Unit-III: 3D Geometry (Marks-18) <i>No. of Classes (Hour) per week</i> : 1 Spheres, Cylindrical surfaces, Central conicoids, Paraboloids, Plane sections of conicoids, Generating lines, Classification of quadrics, Illustration of graphing standard quadric surfaces like cone, Ellipsoid	Term I: (5 Lectures+ 01 Tutorial)Lecture-1: Equation of sphere in standard and central form.Radius and coordinate of centre of sphere from general equationof sphere. Equation of a sphere when coordinates of extremepoints of diameter is given.Lecture-2: Section of a sphere by a plane.Lecture-3: Equation of sphere through the intersection of twogiven spheres.Lecture-3: Equation of sphere through the intersection of twogiven spheres.Lecture-4: Tangent plane of sphere at a given point. Equation ofnormal at a point.Lecture-5: Cylinder, Equation of Right Circular Cylinder.Tutorial-1Term II: (03 Lectures+ 01 Tutorial)Lecture-6: Cone, right circular coneLecture-7: General equation of central conicoid. EllipsoidLecture-8: Classification of quadricsTutorial-2
	lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid. UNIT-4: General, particular, explicit, implicit and singular solutions of a differential equation. First order but not first degree. Exact differential equations and integrating factors, and equations reducible to this form, linear equation, Bernoulli equation and special integrating factors and transformations. Course: B. Sc. (Hons.) Major in Mathematics Course Type: Major-1 Course Code: MATHMJ101 Unit-III: 3D Geometry (Marks-18) <i>No. of Classes (Hour) per week</i> : 1 Spheres, Cylindrical surfaces, Central conicoids, Paraboloids, Plane sections of conicoids, Generating lines, Classification of quadrics, Illustration of graphing standard quadric surfaces like cone, Ellipsoid

	Term III: (03 Lectures+ 01 Tutorial)
	Lecture-9. Ellipsoid
	Lecture-10: Paraboloid
	Lecture-11: Hyperboloid of one sheet and two sheets
	Tutorial-3
Course: B. Sc. (Hons.) Major in	<u>Term I:</u> (10 Practicals)
Mathematics	Practical-1: MATLAB interface, data types, variables, flow
Course Type: SEC	control statements
Course Code: MATSEC01	Practical-2: arrays: creating, indexing, operations, Matrix creating
Course Title: D. MATI AR 1.	Practical-3: Matrix creating, indexing operations, input and output functions
(Marks-50)	Practical-4: user-defined function: anonymous function
No. of Classes (Hour) per week: 2	Practical-5: Plotting of two dimensional functions: graph plotting, graph formatting, title, axis, line, colours, etrc
MATI AD interface data tumos	Practical-6: Multiple plots, matrix plots
variables, flow control statements	Practical-7: Polar plots
arrays: creating, indexing,	Practical-8: 3D plotting (line, surface, mesh and contours)
operations, Matrix creating,	Practical-9: different types of loops in MATLAB
indexing, operations, input and output function mathematical	Practical-10: Finding the sum, product of a list of number in an
library functions, user-defined	array and sub-array without using library function
function: anonymous function.	
Plotting of two dimensional	<u>Term II:</u> (06 Practicals)
formatting (title, axis, line styles,	Practical-11: Finding max, min of a list of number in an array, in a sub-array without using library function
matrix plots, polar plots, 3D	Practical-12: Finding a sub-matrix of a given matrix
plotting (line, surface, mesh, and contours) of three dimensional	Practical-13: Finding the column sum, product, max, min of a given matrix without using library function.
functions. i Find the sum product max min	Practical-14: Finding the column sum, product, max, min of a given matrix without using library function.
of a list of number in an array, in a sub-array without library function.	Practical-15: Defining any transcendental function and then finding and showing the table of its functional values.
ii. Find a sub-matrix of a given	Practical-16: Plotting of graph of functions e^{ax+b} , $\log(ax + dx)$
matrix.	b), $\log\left(\frac{1}{ax+b}\right)$, $\sin(ax+b)$, $\cos(ax+b)$, $ ax+b $ and to illustrate
iii. Find the column sum, product, max, min of a given matrix without	the effect of a and b on the graph.
iv. Find the row sum, product, max,	<u>Term III:</u> (06 Practicals)
min of a given matrix without library function.	Practical-17. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them
v. Define any transcendental	Inem. Departicul 19: Skotshing powerstein survey (a.g. tarsheid and i
table of its functional values.	epicycloids, hypocycloid).
vi. Plotting of graph of functions e^{ax+b} , $\log(ax + b)$	Practical-19: Tracing of conics in Cartesian coordinates/ polar coordinates.
b), $\log\left(\frac{1}{ax+b}\right)$, $\sin(ax + b)$, $\cos(ax + b)$, $ ax + b $ and to illustrate the effect of <i>a</i> and <i>b</i> on	Practical-20: Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates.
the graph.	Practical-21: Revision
vii. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them	Practical-22: Revision
unomi.	

[F
	 viii. Sketching parametric curves (e.g., trochoid, cycloid, epicycloids, hypocycloid). ix. Tracing of conics in Cartesian coordinates/ polar coordinates. x. Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates. 	
Dr. Kousik	Course type: Mathematics	<u>Term I</u> (8 Lectures)
Bhattacharya	(Honours) and 3 year MDC	Lecture 1: Hyperbolic functions, higher order derivatives
	Paper- Minor-1(4 year Hons.), Minor-1(3 year MDC: Physical	Lecture 2: Leibnitz rule and its applications to problems of type eax+bsinx, eax+bcosx, (ax+b)nsinx, (ax+b)ncosx,
	Science)	Lecture 3: concavity and inflection points
		Lecture 5: Related problems of envelopes
	No of Classes (Hour) per week: 2	Lecture 6: Concept and geometrical foundation of asymptotes
	Minor 1. Coloulus Coomating &	Lecture 7: Related problems of Asymptotes
	Differential Equation	Lecture 8: Tutorial
	Unit-I: (Calculus -I): Marks: 16	<u>Term II</u> (8 Lectures)
	Hyperbolic functions, higher order	Lecture 9: curve tracing in cartesian coordinates
	applications to problems of type	Lecture 10: tracing in polar coordinates of standard curves
	eax+bsinx, eax+bcosx, (ax+b)nsinx, (ax+b)ncosx conceptity and	Lecture 11: L'Hospital's rule, applications in business, economics
	inflection points, envelopes,	Lecture 12: Different kind of typical problems
	asymptotes, curve tracing in	Lecture 13: Reduction formulae with general derivation
	cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule.	Lecture 14: Illustrations of reduction formulae of the type $\int \sin nx dx$, $\int \cos nx dx$, $\int \tan nx dx$, $\int \sec nx dx$
	applications in business, economics and life sciences.	Lecture 15: Illustrations of reduction formulae of the type $\int (\log x) n dx$, $\int sinnx sinmx dx$, parametric equations
	Unit-II: (Calculus -II): Marks: 14	Lecture 16: Tutorial
	Reduction formulae, derivations and illustrations of reduction formulae	Term III (8 Lectures)
	of the type $\int \sin nx dx$, $\int \cos nx dx$,	Lecture 10: Parameterizing a curve arc length of a curve
	$\int \tan nx dx, \int \sec nx dx, \int (\log x)n dx,$	Lecture 20: Arc length of parametric curves area under a curve
	equations, parameterizing a curve.	Lecture 21: Area and volume of surface of revolution
	arc length of a curve, arc length of	Lecture 22: Techniques of sketching conics.
	parametric curves, area under a curve area and volume of surface of	Lecture 23: Tutorial
	revolution, techniques of sketching	Lecture 24: Tutorial
	conics.	
Buddhadeb Mondal	Course type: Mathematics (Minor): Paper- MTMI01:	<u>Term I</u> (9 Lectures)
	No of Classes (Hour) per week: 2	Lecture 1: Introduction to Reflection properties of conics, rotation of axes
	Unit III: Geometry	Lecture 2: Second-degree equations,
	Unit III: Geometry : (Marks-09)	Lecture 2: Second-degree equations, Lecture 3: Classification of conics using the discriminates with
	Unit III: Geometry : (Marks-09) Reflection properties of conics,	Lecture 2: Second-degree equations, Lecture 3: Classification of conics using the discriminates with examples

	•	
	using the discriminant, polar	Lecture 6: Central conicoids, paraboloids with examples
	equations of conics.	Lecture 7: Examples solve
	Spheres. Cylindrical surfaces.	Lecture 8: Tutorial
	plane sections of conicoids	Lecture 9: Tutorial
	generating lines, classification of	<u>Term II</u> (9 Lectures)
	quadrics, illustrations of graph in	Lecture 10: Introduction to plane sections of conicoids
	standard quadric surfaces like cone, ellipsoid	Lecture 11: Generating lines with an example
		Lecture 12: classification of quadrics with examples
	Unit IV: Differential Equation	Lecture 13: Illustrations of graph in standard quadric surfaces like cone, ellipsoid
	: (Marks- 14)	Lecture 14: Introduction to differential equations and mathematical models
	Differential equations and mathematical models. General,	Lecture 15: General, particular, explicit, implicit and singular solutions of a differential equation
	particular, explicit, implicit and	Lecture 16: Examples solve
	equation Exact differential	Lecture 17: Tutorial
	equations and integrating factors,	Lecture 18: Tutorial
	separable equations and equations	
	reducible to this form, linear	Term III (8 Lectures)
	special integrating factors and	
	transformations.	Lecture 19: Exact differential equations with examples
		Lecture 20: What is integrating factors with examples
		Lecture 21: Separable equations and equations reducible to this form
		Lecture 22: linear equation with examples
		Lecture 23: Bernoulli equations with examples
		Lecture 24: Special integrating factors and transformations.
		Lecture 25: Tutorial
		Lecture 26: Tutorial

<mark>Semester III</mark>

Name of the Teacher	Syllabus Allotted	Teaching Plan
	Course type: Mathematics (Honours)	Theory
Dr. Bimal	Core Course	<u>Term I</u> (4 Lectures)
Krishna Das	Paper- C7T & C7P	Lecture 1: Algorithms. Convergence. Errors: absolute. relative, percentage
	No of Classes (Hour) per week: 1 (Theory) No of Classes (Hour) per week: 4 (Practical)	Lecture 2: Errors: Inheritance, Truncation, Round off. And related problems
	Unit 1. (Introduction) Marks: 02	Lecture 3: Concept of Transcendental and polynomial equations. Bisection method
	Algorithms. Convergence. Errors: relative, absolute. Round off. Truncation.	Lecture 4: Related problems of Bisection method
		<u>Term II</u> (4 Lectures)
	Unit 2: (Transcendental and Polynomials Equations) Marks: 07	Lecture 5: Newton's method and its related problems Lecture 6: Regula-falsi method and its Related problems
		Lecture 7: secant method and its related problems
	Transcendental and polynomial equations:	Lecture 8: Tutorial
	Bisection method, Newton's method, secant method Regula-falsi method fixed point	<u>Term III</u> (4 Lectures)
	iteration, Newton-Raphson method. Rate of	Lecture 9: fixed point iteration and its related problems
	convergence of these methods.	Lecture 10: Newton-Raphson method and its related problems
	C-7P : Numerical Methods Lab:	Lecture 11: Rate of convergence of these methods
	(Marks 20)	Lecture 12: Tutorial
	1. Solution of transcendental and algebraic equations by	Numerical Methods (Practical Lab)
	i) Bisection method	<u>Term I</u> (16 Lectures)
	ii) Newton Raphson method.iii) Secant method.	Lecture 1: Solution of transcendental and algebraic equations by Bisection method.
	iv) Regula Falsi method.	Lecture 2: Solution of transcendental and algebraic
	2. Solution of system of linear	equations by Newton Raphson method.
	equations i) LU decomposition method	Bisection method for the equation $x^3 + x^2 - 1 = 0$ and $x^3 - 4x - 9 = 0$
	ii) Gaussian elimination method iii) Gauss-Jacobi method	Lecture 4: Practice session: Demonstrate your program NR method for the equation $3x - cosx - 1 = 0$ and
	iv) Gauss-Seidel method	$x^3 - 3x + 1 = 0$
	i) Lagrange Interpolation	equations by Secant method
	ii) Newton Interpolation	Lecture 6: Solution of transcendental and algebraic
	4. Numerical Integration	Lecture 7: Practice Session: Demonstrate your program
	i) Trapezoidal Rule	Eccure 7. Tractice Session. Demonstrate your program
	11) Simpson's one third rule	Secant method for the equation $x^3 + x^2 - 1 = 0$
	111) Weddle's Rule	Lecture 8: Practice session: Demonstrate your program
	iv) Gauss Quadrature	Regula Falsi for the equation $3x - cosx - 1 = 0$
	5. Method of finding Eigenvalue by Power method	Lecture 9: Solution of system of linear equations by LU decomposition method
	6. Fitting a Polynomial Function	Lecture 10: Solution of system of linear equations by Gaussian elimination method
	7. Solution of ordinary differential	

equations	Lecture 11: Practice Session: Write a program to solve
i) Euler method	the equations:
ii) Modified Euler method iii) Runge Kutta method	$10x_1 + 8x_2 - 3x_3 + x_4 = 16$ $2x_1 + 10x_2 + x_3 - 4x_4 = 9$ $3x_1 - 4x_2 + 10x_3 + x_4 = 10$ $2x_1 + 2x_2 - 3x_2 + 10x_4 = 11$
	By using LU decomposition method Lecture 12: Practice session: Write a program to solve
	the equations:
	$10x_1 + 8x_2 - 3x_3 + x_4 = 16$ $2x_1 + 10x_2 + x_3 - 4x_4 = 9$ $3x_1 - 4x_2 + 10x_3 + x_4 = 10$ $2x_1 + 2x_2 - 3x_3 + 10x_4 = 11$
	By using Gauss Elimination method
	Lecture 13: Solution of system of linear equations by Gauss-Seidel method
	Lecture 14: Solution of system of linear equations by Gauss-Jacobi method
	Lecture 15: Practice Session: Write a program to solve
	the equations:
	20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25
	By using Gauss Jacobi method Lecture 16: Practice session: Write a program to solve
	the equations:
	20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25
	By using Gauss Seidal method
	Term II (16 Lectures)
	Lecture 17: Newton forward Interpolation Lecture 18: Newton backward Interpolation Lecture 19: Practice Session: Write a program to find
	the value of $f(142)$ by Newton Forward interpolation
	formula of the following information :
	x 140 150 160 170 180
	f(x) 3.685 5.854 6.302 8.072 10.225
	Lecture 20: Practice session: Write a program to find the value of $f(172)$ by Newton Backward interpolation formula of the following information :
	x 140 150 160 170 180
	$f(x) 3.\overline{685} 5.854 6.302 8.072 10.225$

Lecture 21: Lagrange Interpolation

Lecture 22: Numerical Integration by Trapezoidal Rule

Lecture 23: Practice Session: Write a program to evaluate f(9) using Lagrange's interpolation formula, given the following set of tabulated values:

x	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Lecture 24: Practice session: Write a program to

evaluate the integral $\int_0^1 x^3 dx$, n = 10 and 20

numerically by Trapezoidal rule.

Lecture 25: Numerical Integration by Simpson's one third rule

Lecture 26: Numerical Integration by Weddle's Rule Lecture 27: Practice Session: Write a program to evaluate the integral $\int_{1.2}^{1.6} (x + \frac{1}{x}) dx$ numerically by Simpson's $\frac{1}{3}$ rule, correct up to 2 significant figures taking 4 intervals.

Lecture 28: Practice session: Write a program to evaluate the integral $\int_0^5 \frac{dx}{1+x}$ taking h = 1 numerically by

Weddle's rule.

Lecture 29: Numerical Integration by Gauss Quadrature

Lecture 30: Method of finding Eigenvalue by Power method

Lecture 31: Practice session: Write a program to find

the largest eigen value in magnitude of the matrix

[10	7	8	7]	
7	5	6	5	by Dower method
8	6	10	9	by Fower method.
7	5	9	10	

Lecture 32: Practice Session: Write a program to evaluate the integral $\int_0^1 \sqrt{1-x^3} dx$ numerically by Gaussian Quadrature rule taking 6 equal intervals and correct up to 2 decimal places.

Term III (08 Lectures)

Lecture 33: Fitting a Polynomial Function Lecture 34: Solution of ordinary differential equations by Euler method Lecture 35: Practice Session: Solve by Euler's method the ODE $\frac{dy}{dx} = x - y$, y(0) = 1 and h = 0.2. Find y(0.4).

Dr. Pradip Kumar Gain	(HONOURS) No of Classes (Hour) per week: 3 CC-5T: (Unit-II) Real Function-II Marks-14 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem.	Lecture 36: Practice session: Write a program to find the value of y when $y(0.1)$ and $y(0.2)$ from the differential equation $\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$ by Euler's method. Lecture 37: Solution of ordinary differential equations by Modified Euler method Lecture 38: Solution of ordinary differential equations by R-K method 2 nd order and 4 th order Lecture 39: Practice Session: Given that $\frac{dy}{dx} = 2 + \sqrt{xy}$ with $y(0) = 1$. Write a program to find the approximate value of y at $x = 2$ in steps of 0.2, using modified Euler's method. Lecture 40: Practice session: Write a program to find the value of y when $x = 0.1$ and 0.2 from the differential equation $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$ by modified Euler's method. Lecture 41: Practice Session: Write a program to solve the ODE $\frac{dy}{dx} = 1 + ysinx - x^2$, $y(0) = 0$ at $x = 0.2$ by using R-K method of second order. Lecture 42: Practice Session: Write a program to solve the ODE $\frac{dy}{dx} = x^2 - y^2$, $y(0) = 2$ at $x = 1.5$, $h = 0.5$ by using R-K method of fourth order. Lecture-1. Discussion on previous knowledge of differential co-efficient of a function. Lecture-2. Differentiability of a function at a point and in an interval Lecture-4. Problems on differentiable functions. Relative extrema, interior extremum theorem. Lecture-4. Problems on differentiability. Tutorial-1
	UU-51: (Unit-11)	Lostune 2 Differentiability of a function of a maint
	Real Function-II Marks-14	Lecture-2. Differentiability of a function at a point and in an interval
		Lecture-3. Algebra of differentiable functions. Relative extrema, interior extremum theorem.
	Differentiability of a function at a point and in an interval, Caratheodory's theorem,	Lecture-4. Problems on differentiability. Tutorial-1
	algebra of differentiable functions. Relative extrema, interior extremum theorem.	
	Rolle's theorem. Mean value theorem.	
		1 erm 11: (04 Lectures + 01 1 utorial)
	intermediate value property of derivatives,	Lecture-1. Discussion on expansion of
	intermediate value property of derivatives, Darboux's theorem. Applications of mean	Lecture-1. Discussion on expansion of functions.
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem,
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 <u>Term III: (04 Lectures + 01 Tutorial)</u>
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem.
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials.
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials. Lecture-4. Various Problems on mean value theorem
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials. Lecture-4. Various Problems on mean value theorem Lecture-5. Some examples and problems on Riemann
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials. Lecture-4. Various Problems on mean value theorem Lecture-5. Some examples and problems on Riemann integration. Tutorial-1
	intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials. Lecture-4. Various Problems on mean value theorem Lecture-5. Some examples and problems on Riemann integration. Tutorial-1

	(HONOURS)	Term I: (04 Lectures+ 01 Tutorial)
	CC-5T: (Unit-III) Real Function-III Marks-14 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, ln (1 + x), 1/(ax + b) and(x+1)n . Application of Taylor's theorem to inequalities.	Lecture-1. Discussion on Cauchy's mean value theorem. Lecture-2. Taylor's theorem with Lagrange's form of remainder Lecture-3. Taylor's theorem with Cauchy's form of remainder Lecture-4. Various Problems on Taylor's Series. Tutorial-1 Lecture-1. Application of Taylor's theorem to convex functions. Lecture-2. Application of Taylor's theorem to relative extrema. Lecture-3. Discussion on Various problems Tutorial-1 Lecture-1. Maclaurin's series expansions. Lecture-2. Expansions of exponential and trigonometric functions in the neighbourhood of 0. Lecture-3. Expansions of ln (1 + x), 1/(ax + b) and (x+1) Lecture-4. Application of Taylor's theorem to inequalities. Lecture-5. Problems Tutorial-1
Dr. Sangita Chakraborty	 Course type: Mathematics (Honours) Core Course (Under CBCS) Paper- C6T: (Group Theory-I) No of Classes (Hour) per week: 3 Unit-1: (Marks-09) Symmetries of a square, dihedral groups, definition and examples of groups including permutation groups and quaternion groups(through matrices), elementary properties of groups. Unit-2: (Marks: 14) Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups. Unit-3: (Marks: 14) Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for permutations, properties of permutations, alternating group and odd permutations, alternating 	Term I: (10 Lectures+ 02 Tutorials)Lecture 1: Introduction to Group Theory. Definition and examples of groups.Lecture 2: Elementary properties of groups with examples.Lecture 2: Elementary properties of groups with examples.Lecture 3: Symmetries of a group: symmetries of a square, dihedral groups.Lecture 4: Permutation groups and its properties.Lecture 5: Quaternion groups through matrices.Lecture 6: Concepts of order of an element with its properties and examples.Lecture 7: Definition and examples of subgroups.Properties of subgroups.Lecture 8: Some important subgroups: cyclic subgroups of various groups.Lecture 9: Continuation of Lecture 8: Center of a group with various examples, centralizer of an element.Lecture 10: Product of two subgroups with properties and examples.Tutorial-1Tutorial-1Tutorial-1Tutorial-1Tutorials)Lecture 11: Introduction to permutations and its properties

· · · · · · · · · · · · · · · · · · ·		
	 theorem and consequences including Fermat's Little theorem. Unit-4: (Marks-09) External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit-5: (Marks: 14) Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems. 	Lecture 12: Cycle notation for permutations, even and odd permutations, alternating group. Lecture 13: Definition and properties of cyclic groups. Lecture 14: Classification of subgroups of cyclic groups. Lecture 15: Concept of cosets and its properties. Lecture 16: Normal subgroup and normalizer of a group and finding these for various groups. Lecture 17: Discussion on Lagrange's Theorem and its consequences. Lecture 18: Fermat's Little theorem in the context of Lagrange's theorem. Tutorial-3 Tutorial-4 Term III: (09 Lectures+ 02 Tutorials)
		 Lecture 19: External direct product of a finite number of groups with properties and examples. Lecture 20: Factor groups and its poperties. Lecture 21: Cauchy's theorem for finite abelian groups. Lecture 22: Introduction to group homomorphisms, properties of homomorphisms, Lecture 23: Properties of isomorphisms. Lecture 24: Cayley's theorem. Lecture 25: First isomorphism theorem. Lecture 26: Second isomorphism theorem. Lecture 27: Third isomorphism theorem. Tutorial-5 Tutorial-6 Doubt-clearing session:
Prof. Sankar Das	Course type: Mathematics (Honours) Core Course Paper- C5T (Introduction to Metric Space) No of Classes (Hour) per week: 1 <u>Unit 4:</u> Metric spaces: Definition and examples. open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.	Term I: (06 Lectures)Lecture 1: Introduction of Metric Spaces.Lecture 2: Definition and examples of Metric Spaces.Lecture 3: Open balls and Closed balls,Lecture 3: Open balls and Closed balls,Lecture 4: Neighbourhood of a point in Metric Space.Lecture 5: TutorialLecture 5: TutorialLecture 6: TutorialLecture 7: Open sets, Interior of a set.Lecture 8: Limit point of a set.Lecture 9: Closed sets.Lecture 10: TutorialLecture 11: TutorialLecture 11: TutorialLecture 12: Diameter of a set, subspaces.
		Lecture 13: Dense sets, separable spaces. Lecture 14: Tutorial Lecture 15: Tutorial
	Prof. Sankar Das	theorem and consequences including Fermat's Little theorem. Unit-4: (Marks-09) External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit-5: (Marks: 14) Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems. Prof. Sankar Das Course type: Mathematics (Honours) Core Course Paper - CST (Introduction to Metric Space) No of Classes (Hour) per week: 1 Unit 4: Metric spaces: Definition and examples. open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, diameter of a set, subspaces, dense sets, separable spaces.

Dr. Anjana	Course type: Mathematics (Honours)	Term I: (10 Lectures+ 02 Tutorials)
Mondal	Core Course	
	D OF T	Lecture-1: Limits of functions
	Paper- C5-T	Lecture-2: Limits of functions (ε - δ approach)
	<u>Unit- 1:</u> (Real Function-1) Marks: 21	Lecture-3: Sequential criteria for limit of functions
	No. of Classes (Hour) per week: ?	Lecture-4: Limit theorems Lecture-5: Limit theorems
	No. of Classes (11001) per week. 2	Lecture-6: Sandwich theorem and its application
	Limits of functions (c & approach)	Lecture-7: One sided limits
	sequential criterion for limits, divergence	Lecture-8: Infinite limits
	criteria. Limit theorems, one sided limits.	Lecture-9: Limit at infinity
	Infinite limits and limits at infinity.	Lecture-10: Some important limits
	Continuous functions, sequential criterion	Tutorial-1
	continuous functions. Continuous functions	Tutorial-2
	on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-	<u>Term II:</u> (06 Lectures+ 02 Tutorials)
	uniform continuity criteria, uniform	Lecture-11: Continuous functions
	continuity theorem.	Lecture-12:, sequential criterion for continuity and
		discontinuity
		Lecture-13: Algebra of continuous functions
		Lecture-14: Algebra of continuous functions
		Lecture-15: Different types of discontinuity
		Lecture-16: Continuous functions on an interval
		Tutorial-3
		Tutorial-4
		Term III: (06 Lectures+ 02 Tutorials)
		Lecture-17. Neighborhood property of continuous functions
		Lecture-18: Intermediate value theorem
		Lecture-19: location of roots theorem
		Lecture-20: preservation of intervals theorem
		Lecture-21: Uniform continuity, non-uniform continuity criteria,
		Lecture-22: uniform continuity theorem.
		Tutorial-5
		Tutorial-6
	Course type: Mathematics (General)	<u>Term I:</u> (10 Lectures+ 02 Tutorials)
	Paper- DSC-1C/2C/3C-T	Lecture-1: Finite and infinite sets, examples of countable
	No. of Classes (Hour) per week: 2	and uncountable sets
		Lecture-2: Properties of real number system
	Finite and infinite sets, examples of	Lecture-3: Properties of real number system
	countable and uncountable sets. Real line,	Lecture-4: bounded sets, suprema and infima
	bounded sets, suprema and infima,	Lecture-5: completeness property of R
	property of R. intervals. Concept of cluster	Lecture-6: Archimedean property of R
	points and statement of Bolzano-	Lecture-7: Neighbourhood, Interior point, open set
	Weierstrass theorem. Real Sequence,	Lecture-8: Limit point, isolated point
	Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem	Lecture-9: Closed set, derived set

	1	
	on limits, order preservation and squeeze theorem, monotone sequences and their convergence (monotone convergence theorem without proof).	Lecture-10: Bolzano-Weierstrass theorem Tutorial-1 Tutorial-2
		<u>Term II:</u> (06 Lectures+ 02 Tutorials)
		Lecture-11: Sequences, Convergent sequences Lecture-12: Limit of sequences, geometrical interpretation, examples, technique of proving convergent sequence using $\epsilon - \delta$ definition.
		Lecture-13: Divergent sequences, bounded sequences, relation between convergent and bounded sequences
		Lecture-14: Some theorems on convergent sequences
		Lecture-15: Limit point of sequences, difference between limit and limit point of sequences
		Lecture-16: Algebraic properties of limit of sequences and applications
		Tutorial-3
		Tutorial-4
		Term III: (06 Lectures+ 02 Tutorials)
		Lecture-17. : Sandwich theorem and applications
		Lecture-18: Monotone sequences, Monotone convergence theorem
		Lecture-19: Subsequence, divergence criteria, applications
		Lecture-20: Monotone subsequence theorem, applications
		Lecture-21: The Bolzano Weierstrass theorem, applications
		Lecture-22: Limit superior and Limit inferior, applications
		Tutorial-5
		Tutorial-6
Dr. Kousik	Course type: Mathematics (Honours)	<u>Term I</u> (Lectures 16)
Bhattacharya	Core Course Paper- C7T & C7P	Lecture 1: System of linear algebraic equations: Gaussian elimination
	No of Classes (Hour) per week: 4	Lecture 2: Related problems of Gauss elimination method
	C-7T · Unit III· System of Linear	Lecture 3: System of linear algebraic equations: Gauss Jordan methods.
	Equations: (Marks 07)	Lecture 4: Related problems of Gauss Jordan method
		Lecture 5: Gauss Jacobi method
	System of linear algebraic equations:	Lecture 6: Related problems of Gauss Jacobi method
	Gaussian elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU decomposition	Lecture 7: Gauss Seidel method
		Lecture 8: Related problems of Gauss Seidel method
		Lecture 9: Convergence of Gauss Jacobi Method
	_	Lecture 10: Convergence of Gauss Seidel Method
	C-7T : Unit IV: Interpolation: (Marks	Lecture 11: LU decomposition
	10)	Lecture 12: Related problems of LU decomposition
	Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference	problems

operators. Gregory forward and backward	Lecture 14: Several kinds of typical problems
difference interpolation.	Lecture 15: Tutorial
on interpolations, methods based on finite	Lecture 16: Tutorial
differences.	
	<u>Term II</u> (16 Lectures)
C-7P : Numerical Methods Lab: (Marks 20)	Lecture 17: Interpolation: concept and its geometrical interpretation
1. Solution of transcendental and	Lecture 18: Lagrange interpolation
algebraic equations by	Lecture 19: Related problems of Lagrange interpolation
i) Bisection method	Lecture 20: Newton forward interpolation
ii) Newton Raphson method.	Lecture 21: Related problems of Newton forward
iii) Secant method.	interpolation
iv) Regula Falsi method.	Lecture 22: Newton backward interpolation
2. Solution of system of linear equations	Lecture 23: Related problems of Newton backward interpolation
i) LU decomposition method	Lecture 24: Gregory forward difference interpolation
ii) Gaussian elimination method	Lecture 25: Related problems of Gregory forward
111) Gauss-Jacobi method	Lecture 26: Gregory backward difference interpolation
1v) Gauss-Seidel method	Lecture 20. Gregory backward unreference interpolation
3. Interpolation	method
i) Newton Interpolation	Lecture 28: Numerical differentiation methods based on
4 Numerical Integration	interpolations
i) Trapezoidal Rule	Lecture 29: Numerical differentiation methods based on
ii) Simpson's one third rule	finite differences.
iii) Weddle's Rule	differentiation
iv) Gauss Quadrature	Lecture 31: Tutorial
,	Lecture 32: Tutorial
5. Method of finding Eigenvalue by	
Power method	<u>Term III</u> (16 Lectures)
6. Fitting a Polynomial Function	Numerical Methods Lab
7. Solution of ordinary differential equations	Lecture 33: Solution of transcendental and algebraic equations by Bisection method & Newton Raphson
i) Euler method	method.
ii) Modified Euler methodiii) Runge Kutta method	Lecture 34: Solution of transcendental and algebraic equations by Secant method & Regula Falsi method
	Lecture 35: Solution of system of linear equations by LU decomposition method
	Lecture 36: Solution of system of linear equations by Gaussian elimination method
	Lecture 37: Solution of system of linear equations by Gauss-Jacobi method and Gauss-Seidel method
	Lecture 38: Lagrange Interpolation
	Lecture 39: Newton forward Interpolation
	Lecture 40: Newton backward Interpolation
	Lecture 41: Numerical Integration by Trapezoidal Rule and Simpson's one third rule
	Lecture 42: Numerical Integration by Weddle's Rule and Gauss Quadrature
	Lecture 43: Method of finding Eigenvalue by Power method
	Lecture 44: Fitting a Polynomial Function

		Lecture 45: Solution of ordinary differential equations by Euler method and Modified Euler method
		Lecture 46: Solution of ordinary differential equations by R-K method 2^{nd} order and 4^{th} order
		Lecture 47: Practice session
		Lecture 48: Practice session
	Course type: Mathematics (Honours)	<u>Term I</u> (4 Lectures)
	Skill Enhancement Course	Lecture 1: Introduction, propositions, truth table,
	Paper- SEC-1T (Logic & Sets)No of Classes (Hour) per week: 1	negation, conjunction and disjunction. Implications, biconditional propositions
	Unit 1: Marks: 17	Lecture 2: converse, contra positive and inverse propositions and precedence of logical operators.
	Introduction, propositions, truth table, negation, conjunction and disjunction.	Lecture 3: Propositional equivalence: Logical equivalences.
	Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical	Lecture 4: Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.
	operators. Propositional equivalence: Logical equivalences. Predicates and	<u>Term II</u> (4 Lectures)
	quantifiers: Introduction, quantifiers, binding variables and negations.	Lecture 5: Sets, subsets, set operations and the laws of set theory and Venn diagrams.
	Unit 2: Marks: 07 Sets, subsets, set operations and the laws of	Lecture 6: Examples of finite and infinite sets. Finite sets and counting principle.
set theory and Venn diagram finite and infinite sets. I	set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and	Lecture 7: Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set.
	counting principle. Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set	Lecture 8: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections.
	Unit 3: Marks: 16	
	Difference and Symmetric difference of two	<u>Term III</u> (4 Lectures)
	sets. Set identities, generalized union and intersections. Relation: Product set.	Lecture 9: Relation: Product set. Composition of relations, types of relations, partitions.
Composition of relations, types of relat partitions, equivalence Relations		Lecture 10: equivalence Relations with example of congruence modulo relation.
	Partial ordering relations, n- ary relations.	Lecture 11: Partial ordering relations, n- ary relations.
		Lecture 12: Tutorial
		Lecture 13: Tutorial
	Course type: Mathematics (General)	<u>Term I</u> (4 Lectures)
	Skill Enhancement Course	Lecture 1: Introduction, propositions, truth table,
	Paper- SEC-11 (Logic & Sets)	negation, conjunction and disjunction. Implications,
	No of Cusses (Hour) per week: 1 Marks -40	Lecture 2: converse, contra positive and inverse
	Introduction propositions truth table	propositions and precedence of logical operators.
neg	negation, conjunction and disjunction. Implications, biconditional propositions,	Lecture 3: Propositional equivalence: Logical equivalences.
	converse, single words and inverse propositions and precedence of logical operators Propositional equivalence:	Lecture 4: Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.
	Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers,	<u>Term II</u> (4 Lectures)
	Binding variables and Negations. Sets, subsets, Set operations, the laws of set theory	Lecture 5: Sets, subsets, set operations and the laws of set theory and Venn diagrams.
	nd Venn diagrams. Examples of finite and nfinite sets. Finite sets and counting	Lecture 6: Examples of finite and infinite sets. Finite
		me comme principie.

	principle. Empty set, properties of empty set. Cartesian product. Partition of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation.	Lecture 7: Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set. Lecture 8: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. <u>Term III</u> (4 Lectures) Lecture 9: Relation: Product set. Composition of relations, types of relations, partitions. Lecture 10: equivalence Relations with example of congruence modulo relation. Lecture 11: Partial ordering relations, n- ary relations. Lecture 12: Tutorial Lecture 13: Tutorial
Buddhadeb Mondal	Course type: Mathematics (Honours) Core Course Paper- C-7T No of Classes (Hour) per week: 2 Unit-V: Integration: (Marks-09) Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3 rd rule, Simpsons 3/8th rule, Weddle's rule, Boole's Rule. midpoint rule, Composite trapezoidal rule, composite Simpson's 1/3 rd rule, Gauss quadrature formula. The algebraic eigen value problem: Power method. Approximation: Least square polynomial approximation. Unit-VI: Ordinary differential equations: (Marks-05) Ordinary differential equations: The method of successive approximations, Euler's method, the modified Euler method, Runge- Kutta methods of orders two and four.	Term I (10 Lectures)Lecture 1: Introduction to Numerical IntegrationLecture 2: Derivation of Newton Cotes formulaLecture 3: Trapezoidal rule with examplesLecture 4: Simpson's 1/3 rd rule with examplesLecture 5: Simpsons 3/8th rule with examplesLecture 6: Weddle's rule with examplesLecture 7: Midpoint rule with examplesLecture 8: Composite trapezoidal rule with explanation.Lecture 9: TutorialLecture 10: TutorialLecture 11: Composite Simpson's 1/3 rd rule with examplesLecture 12: Derivation of Gauss quadrature formulaLecture 13: Introduction to algebraic eigen value problemLecture 15: Introduction to ApproximationLecture 16: Least square polynomial approximation with examples.Lecture 17: Some problems solveLecture 18: TutorialLecture 19: TutorialLecture 20: Introduction to Ordinary differential equations with examplesLecture 21: The method of successive approximations with examples.Lecture 22: Euler's method with examplesLecture 23: Modified Euler method with examples
		Lecture 24: Runge-Kutta methods of orders two and four with examples Lecture 25: Tutorial Lecture 26: Tutorial

Course trance Mathematics (Conserve)	\mathbf{T}_{comp} $\mathbf{I}(0 1 1 1 1 1 1 1 1$
Course type: Mathematics (General)	<u>1 erm 1</u> (9 Lectures)
Banar DSC 1CT	Lecture 1: Introduction to Infinite series with examples
(Deal Analysia)	Lecture 2: Cauchy convergence criterion for series,
(Real Analysis)	positive term series with examples
No of Classes (Hour) per week: 2	Lecture 3: Geometric series with examples
	Lecture 4: comparison test with examples
Infinite series: Cauchy convergence criterion for series positive term series geometric series	Lecture 5: Convergence of p-series with examples
comparison test, convergence of p-series, Root	Lecture 6: Root test with examples
test, Ratio test, alternating series, Leibnitz's test	Lecture 7: Ratio test with examples
(Tests of Convergence without proof). Definition and examples of absolute and conditional	Lecture 8: Tutorial
Convergence Series. Sequences and series of	Lecture 9: Tutorial
functions, Pointwise and uniform convergence.	
μ -test, M-test, Statements of the results about uniform convergence and integrability and	<u>Term II</u> (10 Lectures)
differentiability of functions, Power series and	Lecture 10: Alternating series with examples
radius of convergence.	Lecture 11: Leibnitz's test with examples
	Lecture 12: Definition and examples of absolute
	Convergence Series
	Lecture 13:Conditional Convergence Series with examples
	Lecture 14: Sequences of functions with examples
	Lecture 15: Series of functions with examples
	Lecture 16: Pointwise and uniform convergence with an examples
	Lecture 17: µ-test with some examples
	Lecture 18: Tutorial
	Lecture 19: Tutorial
	Term III (08 Lectures)
	Lecture 20: M-test with examples
	Lecture 21: Algebra of field
	Lecture 22: uniform convergence with examples
	Lecture 23: Integrability and differentiability of functions
	Lecture 24: Power series with examples
	Lecture 25: Radius of convergence with some examples
	Lecture 26: Tutorial
	Lecture 27: Tutorial

<mark>Semester V</mark>

Name of the Teacher	Syllabus Allotted	Teaching Plan
	Course type: Mathematics (Honours)	<u>Term I</u> (8 Lectures)
Dr. Bimal	Discipline Specific Course	
Krishna Das	Paper-DSE1T (Linear Programming	Lecture 1: Introduction to linear programming problem
	Problem)	Lecture 2: Formulation of LPP and related problems
	No of Classes (Hour) per week · 2	Lecture 3: convex sets, convex hull, convex polyhedron, Hyperplane
		Lecture 4: Related theorems and problems on convex sets,
	Unit-I: (Simplex Algorithm) Marks: 25	Hyperplanes
	Introduction to linear programming	Lecture 5: Linearly dependent and independent sets, Basic solutions and Degenerate and Non-degenerate basic solutions
	problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness the simplex	Lecture 6: Basic feasible solutions and Degenerate and Non-degenerate basic feasible solutions
	algorithm, simplex method in tableau format, introduction to artificial variables,	Lecture 7: $x_1 = 2, x_2 = 3, x_3 = 1$ is a feasible solution of Maximize $z = x_1 + 2x_2 + 4x_3$
	two-phase method. Big-M method and their comparison.	the LPP. $\frac{subject \ to, 2x_1 + x_2 + 4x_3 = 11}{3x_1 + x_2 + 5x_3 = 14}$ Find a basic $x_1, x_2, x_3 = 0$
	Unit 2: (Duality) Marks: 11	feasible solution. $x_1, x_2, x_3 = 0$
		Lecture 8: Tutorial
	Duality, formulation of the dual problem,	<u>Term II</u> (8 Lectures)
	primal-dual relationships, economic	
	interpretation of the dual.	Lecture 9: Graphical solution of LPP
		Unbounded solution, infinitely many solutions of graphical solution of LPP, Standard form of LPP, Introduction of slack and surplus variables
		Lecture 11: Prove that if for a basic feasible solution $\mathbf{X}_{\mathbf{B}}$ of a LPP <i>Maximize</i> $z = \mathbf{C}\mathbf{X}$ <i>subject to</i> , $\mathbf{A}\mathbf{X} = \mathbf{b}, \mathbf{X} \ge 0$ we have $z_j - c_j \ge 0$ for every column a_i of \mathbf{A} then $\mathbf{X}_{\mathbf{B}}$ is an optimal solution.
		Lecture 12: Prove that if at any iteration of the simplex algorithm we get $z_j - c_j < 0$ for at least one <i>j</i> and for this <i>j</i> ,
		$y_{ij} \le 0$ for all $i = 1, 2,, m$ then the LPP admits of an unbounded solution in a maximization problem.
		Lecture 13: Theory of simplex method, the simplex algorithm, simplex method in tableau format. Define Simplex, give an example of simplex at E^1 , E^2 , E^3
		Lecture 14: Solve the LPP by simplex method : Maximize $z = 3x_1 + 2x_2 + 5x_3$
		subject to, $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$
		$x_1, x_2, x_3 \ge 0$
		Lecture 15: Use simplex method to solve the LPP Maximize $z = 2r_0 + r_0$
		subject to, $x_1 + x_2 - 2x_3 \le 7$
		$-3x_1 + x_2 + 2x_3 \le 3$
		$x_1, x_2, x_3 \ge 0$
		Lecture 16: Introduction to artificial variables

Term III (14 Lectures) Lecture 17: Big-M method and corresponding problems Lecture 18: Use penalty method to solve the LPP *Maximize* $z = 4x_1 + x_2$ *subject to*, $3x_1 + x_2 = 3$ $4x_1 + 3x_2 \ge 6$ $x_1 + 2x_2 \le 4$ $x_1, x_2 \ge 0$ Lecture 19: Solve the LPP using Charnes Big M method *Maximize* $z = -3x_1 + x_2 + 3x_3 - x_4$ *subject to*, $x_1 + 2x_2 - x_3 + x_4 = 0$ $2x_1 - 2x_2 + 3x_3 + 3x_4 = 9$ $x_1 - x_2 + 2x_3 - x_4 = 6$ $x_1, x_2, x_3, x_4 \ge 0$ Lecture 20: Concept of Two-phase method and corresponding theorems Lecture 21: Solve the following LPP using Two Phase method *Maximize* $z = 2x_1 - 3x_2$ subject to, $-x_1 + x_2 \ge -2$ $5x_1 + 4x_2 \le 46$ $7x_1 + 2x_2 \ge 32$ $x_1, x_2 \ge 0$ Lecture 22: Solve the following LPP using Two Phase simplex method *Maximize* $z = x_1 + x_2$ subject to, $2x_1 + x_2 \ge 4$ $x_1 + 7x_2 \ge 7$ $x_1, x_2 \ge 0$ Lecture 23: Concept of Duality and formulation of dual problem. Lecture 24: Fundamental theorem of Duality, Theorems on Duality. Lecture 25: primal-dual relationships, Dual of the dual is primal. Lecture 26: economic interpretation of the dual. Lecture 27: Given the LPP *Maximize* $z = 2x_1 + 3x_2 + 4x_3$ *subject to*, $x_1 - 5x_2 + 3x_3 = 7$ $2x_1 - 5x_2 \le 3$ $3x_2 - x_3 \ge 5$, $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign Formulate the dual of the LPP. Lecture 28: Give the dual of the following LPP and hence solve it: *Maximize* $z = 3x_1 - 2x_2$ subject to, $x_1 \leq 4, x_2 \leq 6$, $x_1 + x_2 \le 5$ $-x_2 \leq -1$ $x_1, x_2 \ge 0$ Lecture 29: Tutorial Lecture 30: Tutorial

Dr. Pradip	(HONOURS)	Term I: (05 Lectures + 01 Tutorial)
Kumar Gain	No of Classes (Hour) per week: 4	
	DSE-2T: (Unit-I)	Lecture-1. Concepts of sample space, random variables. Axioms of probability.
	Probability & Distribution Marks-16	Lecture-2. Classical definition of probability. Problems
	Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution	Lecture-3. Probability as the long run relative sequences. Statistical definition of probability, axiomatic definition of probability.
	function, probability mass/density functions, mathematical expectation,	Lecture-4. Probabilty distribution. Probabilty mass/density functions.
	moments, moment generating function, characteristic function, discrete distributions: uniform binomial Poisson	Lecture-5. Problems Tutorial- 1
	geometric, negative binomial, continuous	
	distributions: uniform, normal,	Term II: (06 Lectures + 01 Tutorial)
	exponential	Lecture-1. Concept of mathematical expectation,
		Lecture-2. Concept of moment generating function, characteristic function, Lecture-3 Discrete probability distributions
		Lecture-2. Concept of moment generating function, characteristic function, Lecture-3. Discrete probability distributions. Lecture-4. Binomial probability distribution.

	Term III: (04 Lectures + 01 Tutorial) Lecture-1. Continuous probability distributions: Lecture-2. Uniform probability distributions. Lecture-3. Normal probability distributions Lecture-4. Problems. Tutorial-1
DSE-2T: (Unit-II) Joint Distribution Marks-14 Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables, bivariate normal distribution, correlation coefficient, joint moment generating function (jmgf) and calculation of covariance (from jmgf), linear regression for two variables.	Term I: (04 Lectures+ 01 Tutorial) Lecture-1. Discussion on the concept of joint probability. distribution and its properties. Lecture-2. Joint probability density functions. Lecture-3. Marginal and conditional probability distributions. Lecture-4. Various Problems. Tutorial-1 Term II: (04 Lectures+ 01 Tutorial) Lecture-1. Discussion on the concept of expectation of function of two random variables, Lecture-2. Conditional expectations, independent random variables,. Lecture-3. Discussion on bivariate normal distribution. Lecture-4. Problems Tutorial-1 Lecture-3. Discussion on correlation coefficient,: Lecture-4. Problems Tutorial-1 Lecture-3. Discussion on correlation coefficient,: Lecture-4. Problems Tutorial-1 Lecture-5. Discussion on joint moment generating function (jmgf) Lecture-6. Problems. Lecture-7. Calculation of covariance (from jmgf), linear regression for two variables. Lecture-4. Problems.
DSE-2T: (Unit-III) Convergence in Probability Marks-09 Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance, Markov chains, Chapman-Kolmogorov equations, classification of states.	Term I: (03 Lectures + 01 Tutorial)Lecture-1. Discussion on Chebyshev's inequality,:Lecture-2. Statement and interpretation of (weak) law oflarge numbers and strong law of large numbers.Lecture-3. Problems.Tutorial-1Term II: (02 Lectures+ 01 Tutorial)Lecture-1. Discussion on Central limit theorem forindependent and identically distributed random variableswith finite variance.Lecture-2. Problems.Tutorial-1Term III: (02 Lectures+ 01 Tutorial)Lecture-2. Problems.Tutorial-1Lecture-2. Problems.Tutorial-1Lecture-2. Problems.Tutorial-1Tutorial-1Lecture-2. Problems.Tutorial-1

Dr. Sangita Chakraborty	Course type: Mathematics (Honours) Core Course (Under CBCS)	<u>Term I:</u> (10 Lectures+ 02 Tutorials)
·	Paper- C12T: (Group Theory-II)	Lecture 1: Recapitulation: Properties of homomorphism and isomorphism. Introduction to automorphism
	No of Classes (Hour) per week: 3	Lecture 2: Automorphism groups, and its relation with permutation groups.
		Lecture 3: Inner automorphism and its properties.
	Unit-1: (Automorphism Groups): (Marks-16)	Lecture 4: Finding automorphism groups of finite and infinite cyclic groups.
	Automorphism, inner automorphism, automorphism groups, automorphism	Lecture 5: Solving problems on automorphisms, inner automorphisms.
	groups of finite and infinite cyclic groups, applications of factor groups to	Lecture 6: applications of factor groups to automorphism groups.
	automorphism groups, Characteristic subgroups, Commutator subgroup and its	Lecture 7: Characteristic subgroups: Definition and properties
	properties.	Lecture 8: Commutator subgroup: Definition and properties.
	Unit 2: (Direct Products): (Marks-11) Properties of external direct products, the	Lecture 9: Properties of external direct products with examples.
	group of units modulo n as an external direct product, internal direct products,	Lecture 10: To establish the group of units modulo <i>n</i> as an external direct product.
	Fundamental theorem of finite abelian	Tutorial 1:
	groups.	Tutorial 2:
	Unit 3: (Group Actions): (Marks-14)	Doubt-clearing session :
	Group actions, stabilizers and kernels, permutation representation associated	<u>Term II:</u> (09 Lectures+ 02 Tutorials)
	with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.	Lecture 11: Internal direct products: Definition and properties with example.
	Unit 4: (Class Equations and Sylow's	Lecture 12: Criteria for a group to be an internal direct product.
	Theorems): (Marks-19) Groups acting on themselves by conjugation, Class equation and consequences, conjugacy in S _n , p-groups, Sylow's theorems and consequences,	Lecture 13: Isomorphism between internal and external direct products.
		Lecture 14: Fundamental theorem of finite abelian groups and its applications for classification of groups of certain order upto isomorphism.
	Cauchy's theorem. Simplicity of A_n for $n \ge 5$, non-simplicity tests.	Lecture 15: Introduction to group actions, stabilizers and kernels: Definition and properties with example.
		Lecture 16: Representation of permutation associated with a given group action.
		Lecture 17: Applications of group actions.
		Lecture 18: Generalized Cayley's theorem.
		Lecture 19: Index theorem.
		Tutorial 3:
		Doubt-clearing session.
		<u>1 erm 111:</u> (09 Lectures+ 02 Tutorials)
		Lecture 20: Groups acting on themselves by conjugation.
		Lecture 21: Class equation and consequences.
		Lecture 22: Determination of conjugacy in S_n . Solving problems on conjugacy classes and class equations.

		 Lecture 23: Definition of p-groups with examples. Cauchy's theorem. Lecture 24: Sylow's theorems: First, Second, Third with proof. Lecture 25: Continuation to Lecture 25. Lecture 26: Consequences of Sylow's theorems. Lecture 27: Solving problems on Sylow's theorems. Lecture 28: Simplicity of An for n>=5. Non-simplicity tests. Tutorial 5: Tutorial 6: Doubt-clearing session:
Prof. Sankar	Course type: Mathematics (Honours)	Term I (8 Lectures)
Das		Lecture 1: Partial differential equations – Basic concepts
	Paper-C11T	and definitions.
	(Partial Differential Equations)	Lecture 2: Formation of Partial differential equations.
	ivo oj Cuisses (Hour) per week: 3	construction and geometrical Interpretation.
	C11T: Partial Differential Equations:	Lecture 4: Method of characteristics for obtaining general
	<u>Unit-1</u> : Partial differential equations –	solution of quasi linear equations.
	Basic concepts and definitions. problems.	Lecture 5: Canonical forms of hist-order linear PDEs.
	construction and geometrical	first order PDEs.
	interpretation. Method of characteristics	Lecture 7: Tutorial
	linear equations. Canonical forms of first-	Lecture 8: Tutorial
	order linear equations. Method of separation of variables for solving first	
	order partial differential equations.	
		Term II (10 Lectures)
	<u>Unit-2</u> : Derivation of heat equation, wave equation and Laplace equation.	Lecture 9: Derivation of heat equation.
	Classification of second order linear	Lecture 10: Derivation of wave equation.
	equations as hyperbolic, parabolic or elliptic Reduction of second order linear	Lecture 11: Derivation of Laplace equation.
	equations to canonical forms.	as hyperbolic.
	Unit-3: The Cauchy problem, Cauchy-	Lecture 13: Classification of second order linear equations as parabolic or elliptic.
	Kovalevsky theorem, Cauchy problem of an infinite string. Initial boundary value	Lecture 14: Reduction of second order linear equations to canonical forms.
	problems. Semi-infinite string with a fixed end semi-infinite string with a free end	Lecture 15: Reduction of second order linear equations to
	Equations with non-homogeneous	canonical forms.
	boundary conditions. Non- homogeneous	Lecture 17: Tutorial
	variables, solving the vibrating string	Lecture 18: Tutorial
	problem. Solving the heat conduction	
	problem.	Term III (10 Lectures)
		Lecture 19: The Cauchy problem, Cauchy-Kovalevsky theorem, Cauchy problem of an infinite string.
		Lecture 20: The Cauchy problem, Cauchy-Kovalevsky theorem, Cauchy problem of an infinite string.
		Lecture 21: Initial boundary value problems.
		Lecture 22: Semi-infinite string with a fixed end, semi- infinite string with a free end

		 Lecture 23: Equations with non-homogeneous boundary conditions. Lecture 24: Non- homogeneous wave equation. Lecture 25: Method of separation of variables, solving the vibrating string problem. Lecture 26: Solving the heat conduction problem. Lecture 27: Tutorial Lecture 28: Tutorial
Dr. Anjana Mondal	Course type: Mathematics (Honours) Discipline Specific Elective Paper- DSE-2T <u>Unit 4:</u> (Statistics) Marks: 21 <i>No. of Classes (Hour) per week</i> : 2 Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.	Term I: (10 Lectures+ 02 Tutorials)Lecture-1: Random variables, Discrete and continuous random variables, Distribution function, Probability density and probability mass function. Expectation of random variablesLecture-2: Some special discrete distributions and their properties.Lecture-3: Some special continuous distributions and their properties.Lecture-4: Definitions of population, sample, random sample, statistic, sampling distribution. Central limit theorem.Lecture-5: Chi-square distribution Lecture-6: Student's t distribution Lecture-7: F distribution.Lecture-7: F distribution.Lecture-9: consistency and efficiency Lecture-10: Method of moment estimation Tutorial-1 Tutorial-2Term II: (06 Lectures+ 02 Tutorials)Lecture-11: Method of maximum likelihood estimation Lecture-11: Method of maximum likelihood estimation Lecture-12: Method of maximum likelihood estimation Lecture-13: Method of maximum likelihood estimation Lecture-16: Interval estimation Lecture-16: Interval estimation Lecture-17: Hypothesis testing Lecture-18: Hypothesis testing Lecture-19: Hypothesis testing Lecture-19: Hypothesis testing Lecture-20: Hypothesis testing Lecture-21: Hypothesis testing Lecture-22: Hypothesis testing

	I	
	Course type: Mathematics (General)	Term I: (10 Lectures+ 02 Tutorials)
	Paper- DSE-1AT	
	No. of Classes (Hour) per week: 2	Lecture-1: Vector space over a field.
		Lecture-2: R, R2, R3 as vector spaces over R
	R, R2, R3 as vector spaces over R.	Lecture-3: Subspaces
	of Linear Independence and examples of	Lecture-4: Linear sum of two subspaces
	different bases. Subspaces of R2, R3.	Lecture-5: Linear span
	Translation, Dilation, Rotation, Reflection	Lecture-6: Linear dependence and independence
	in a point, line and plane. Matrix form of	Lecture-7: Basis of a vector space,
	basic geometric transformations.	Lecture-8: Standard basis for R, R2, R3
	eigenvectors for such transformations and	Lecture-9: Translation, Dilation, Rotation, Reflection in a point, line and plane
	eigen spaces as invariant subspaces.	Lecture-10: Translation, Dilation, Rotation, Reflection in a point, line and plane
		Tutorial-1
		Tutorial-2
		Term II: (06 Lectures+ 02 Tutorials)
		Lecture-11: Matrix form of basic geometric transformations
		Lecture-12: Characteristic equation and Cayley- Hamilton theorem
		Lecture-13: eigen values
		Lecture-14: eigen vectors
		Lecture-15: Revision
		Lecture-16: Revision
		Tutorial-3
		Tutorial-4
		Term III: (06 Lectures+ 02 Tutorials)
		Lecture-17. Revision
		Lecture-18: Revision
		Lecture-19: Revision
		Lecture-20: Revision
		Lecture-21: Revision
		Lecture-22 Revision
		Tutorial-5
		Tutorial-6
Dr. Kousik	Course type: Mathematics (Honours)	<u>Term I</u> (8 Lectures)
Bhattacharya	Core Course	
	Paper-C11T (Partial Differential	Lecture 1: Central force and related problems
	Equations & Applications)	Lecture 2: Central orbits and related problems
		Lecture 3: Apses and related problems
	No of Classes (Hour) per week: 2	Lecture 4: Different Kind of typical problems-I
		Lecture 5: Different Kind of typical problems-II
	Unit 4: (Particle Dynamics) Marks: 20	Lecture 6: Different Kind of typical problems-III
		Lecture 7: Tutorial
	Central force. Constrained motion, varying	Lecture 8: Tutorial
	mass, tangent and normal components of	<u>Term II</u> (8 Lectures)

	acceleration, modelling ballistics and planetary motion, Kepler's second law.	Lestere O. Constanting in the
	r	Lecture 9: Constrained motion: concept
		Lecture 10: Constrained motion in circular path
		Lecture 11: Constrained motion in parabolic path
		Lecture 12: varying mass: its concept
		Lecture 13: Related problems on varying mass
		Lecture 14: Related typical problems of constrained motion
		Lecture 15: Tutorial
		Lecture 16: Tutorial
		<u>Term III</u> (8 Lectures)
		Lecture 17: Tangant and normal components of acceleration
		Lecture 17: Tangent and normal components of acceleration Lecture 18: Related problems on Tangent and normal components of acceleration
		Lecture 19: Modelling ballistics and planetary motion
		Lecture 20: Related problems on planetary motion
		Lecture 21: Kepler's second law
		Lecture 22: Related problems on Kepler's law
		Lecture 23: Tutorial
		Lecture 24: Tutorial
	Course type: Mathematics (General)	<u>Term I</u> (8 Lectures)
	Skill Enhancement Course	Lecture 1: Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic,
	SEC3T: (Number Theory) Marks - 40	Lecture 2: prime counting function, statement of prime number theorem.
	No of Classes (Hour) per week: 1	Lecture 3: Goldbach conjecture, binary and decimal representation of integers
		Lecture 4: Tutorial
	Division algorithm, Lame's theorem,	Term II (10 Lectures)
	theorem of arithmetic, prime counting	Lecture 5: linear congruences, complete set of residues.
	function, statement of prime number theorem. Goldbach conjecture, binary and	Lecture 6: Number theoretic functions, sum and number of divisors,
	decimal representation of integers, linear	Lecture 7: totally multiplicative functions
	congruences, complete set of residues.	Lecture 8: Tutorial
	number of divisors, totally multiplicative functions definition and properties of the	Term III (8 Lectures)
	Dirichlet product, the Möbius inversion	Lecture 9: definition and properties of the Dirichlet product
	formula, the greatest integer function,	Lecture 10: the Möbius inversion formula, the greatest
	Euler's phi-function.	integer function, Euler's phi-function.
		Lecture 11: Tutorial
		Lecture 12: Tutorial
Buddhadeb	Course type: Mathematics (Honours)	Term I (9 Lectures)
Mondal	Core Course	
	Paper- DSE-1T (Linear	Lecture 1: Introduction to Transportation problem with
	Programming)	examples
		Lecture 2: Mathematical formulation
	No of Classes (Hour) per week: 2	Lecture 3: Northwest-corner method with examples
		Lecture 4: least cost method with examples
	Unit-II. Number Theoretic Function	Lecture 5: Vogel approximation method with explanation

1	(Marks- 16)	Lecture 6: Algorithm for solving transportation problem
	Transportation problem and its	Lecture 7: Some Transportation problems solve
	mathematical formulation, northwest-	Lecture 8: Tutorial
	corner method, least cost method and	Lecture 9: Tutorial
	determination of starting basic solution.	<u>Term II</u> (8 Lectures)
	algorithm for solving transportation	
	problem, assignment problem and its	Lecture 10: Introduction to Assignment problem
	mathematical formulation, Hungarian	Lecture 11: Its mathematical formulation
	method for solving assignment problem	Lecture 12: Hungarian method for solving assignment
	Unit-III. Came Theory (Marks- 14).	problem
	Cint-III. Game Theory (Warks- 14).	Lecture 13: Examples over Assignment problems
	Game theory: formulation of two person	Lecture 14: Test of optimality of Assignment problems
	zero sum games, solving two person zero	Lecture 15: Tutorial
	sum games, games with mixed strategies,	Lecture 16: Tutorial
	graphical solution procedure of a linear	Lecture 17: Tutorial
	programming of games.	<u>Term III</u> (7 Lectures)
		I actions 19. Interchantics to Connections
		Lecture 18: Introduction to Game theory
		Lecture 19: Formulation of two person zero sum games
		Lecture 20: Solving two person zero sum games
		Lecture 21: Games with mixed strategies,
		programming of games.
		Lecture 23: Tutorial
		Lecture 24: Tutorial
	Course type: Mathematics (General)	<u>Term I</u> (8 Lectures)
	Discipline Specific Elective	
	x x	
		Lecture 1: Introduction to matrices
	DSE-1A-T:	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form
	DSE-1A-T: (Matrices)	Lecture 1: Introduction to matricesLecture 2: Matrices in diagonal formLecture 3: Reduction to diagonal form upto matrices of
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3.	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Bank of	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative	 Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Term II (7 Lectures)
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Consistent of the system of the system.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples Lecture 13: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples Lecture 13: Tutorial Lecture 14 Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples Lecture 13: Tutorial Lecture 14 Tutorial Lecture 15: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples Lecture 13: Tutorial Lecture 14 Tutorial Lecture 15: Tutorial
	DSE-1A-T: (Matrices) No of Classes (Hour) per week: 2 Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices.Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Lecture 1: Introduction to matrices Lecture 2: Matrices in diagonal form Lecture 3: Reduction to diagonal form upto matrices of order 3 Lecture 4: Inverse of a matrix with examples Lecture 5: Computation of matrix inverses using elementary row operations Lecture 6: Tutorial Lecture 7: Tutorial Lecture 8: Tutorial Lecture 8: Tutorial Lecture 9: Introduction to rank of matrices Lecture 10: Determine rank of a matrix Lecture 11: Solutions of a system of linear equations using matrices Lecture 12: Examples Lecture 13: Tutorial Lecture 14 Tutorial Lecture 15: Tutorial Lecture 15: Tutorial

Lecture 17: Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics
Lecture 18: Introduction to statistics
Lecture 19: Examples
Lecture 20: Applications
Lecture 21: Tutorial
Lecture 22: Tutorial
Lecture 23: Tutorial