DEPARTMENT OF MATHEMATICS

Syllabus Distribution and Teaching Plan

Odd Semester Session: 2023-2024
Term I: Commencement of classes to $1^{\text {st }}$ internal,
Term II: $1^{\text {st }}$ internal to $2^{\text {nd }}$ internal.
Term III: $2^{\text {nd }}$ internal to ESE preparatory break.

Semester I

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal Krishna Das	Course type: Mathematics (Honours) Paper- Major-1(4 year Hons.) No of Classes (Hour) per week: 1 Major-1-: Calculus, Geometry \& Differential Equation Unit-II: (Calculus -II): Marks: 14 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin n x d x, \int \cos n x d x$, $\int \tan n x d x, \int \sec n x d x, \int(\log x) n d x$, $\int \operatorname{sinnx} \operatorname{sinmx} d x$ parametric equations, parameterizing a curve, arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.	Term I (4 Lectures) Lecture 1: Illustrations of reduction formulae of the type $\int \sin ^{n} \mathrm{x} d x$, $\int \cos ^{n} x d x, \int \tan ^{n} x d x, \int \sec ^{n} x d x$. If $\phi(n)=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$, show that $\phi(n)+\phi(n-2)=\frac{1}{n-1}$ and deduce the value of $\phi(5)$. Lecture 2: Find the reduction formulae of $\int(\log x)^{n} \mathrm{dx}$, $\int \sin ^{m} x \cos ^{n} x d x, \int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x d x$. Deduce the value of $\int_{0}^{\frac{\pi}{2}} \sin ^{8} x \cos ^{6} x d x$ Lecture 3: Reduction formula for $\int \cos ^{m} x \cos n x d x$ and $\int \cos ^{m} x \sin n x d x, m, n$ being positive integer. If $I_{m, n}=$ $\int_{0}^{\frac{\pi}{2}} \cos ^{m} x \cos n x d x$, prove that $I_{m, n}=\frac{m(m-1)}{m^{2}-n^{2}} I_{m-2, n}$ Lecture 4: Tutorial Term II (4 Lectures) Lecture 5: Parametric equations, Parameterizing a curve and its related problems, arc length of a curve and Arc length of parametric curves Lecture 6: Find the length of arc of the following curves between the indicated points (i) $x=e^{\theta} \sin \theta, y=e^{\theta} \cos \theta ; \theta=0$ and $\frac{\pi}{2}$ (ii) $y=\frac{1}{2} a\left(e^{\frac{x}{a}}+e^{-\frac{x}{a}}\right) ; x=0$ and $x=x$ Lecture 7: Find the perimeter of the hypocloid $\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}=1$, Find the length of the perimeter of the astroid $(x)^{\frac{2}{3}}+(y)^{\frac{2}{3}}=(a)^{\frac{2}{3}}$ Lecture 8: Area under a curve and its related problems. Lecture 8: Find the area of the region bounded by the parabola $y^{2}=$ $4 x$ and its latus rectum, Find the area of the circle $r=2 a \sin \theta$. Term III (4 Lectures) Lecture 9: Area and volume of surface of revolution, Techniques of sketching conics. Lecture 10: Find the volume generated by revolution about x -axis of the area bounded by the loop of the curve $y^{2}=x^{2}(2-x)$, Find the volume and the surface area of the solid generated by revolving the cycloid $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$ about its base. Lecture 11: Tutorial Lecture 12: Tutorial

Dr. Sangita Chakraborty

(HONOURS)

No of Classes (Hour) per week: 1

MJ-1T: (Unit-I)
Calculus :- Marks-16

Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type $\mathrm{e}^{\mathrm{ax+b}} \sin x, \mathrm{e}^{\mathrm{ax+b}} \cos x,(a x+b)^{n} \sin x$, $(a x+b)^{n} \cos x$, concavity and inflection points, envelopes, asymptotes, curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences.

Term I: (07 Lectures+ 01 Tutorial)
Lecture-1. Discussion on previous knowledge of calculus.
Lecture-2. Hyperbolic functions.
Lecture-3. Discussion on meaning of higher order of differential co-efficient. Method of finding higher order of differential coefficients of some standard functions.
Lecture-4. Discussion on Leibnitz rule and its applications.
Lecture-5. Applications of Leibnitz rule to the problems of type $e^{a x+b} \sin x, e^{a x+b} \cos x,(a x+b)^{n} \sin x,(a x+b)^{n} \cos x$,
Lecture-6. Discussion on Convexity and concavity.
Lecture-7. Discussion on the problems related to Convexity and concavity and Point of inflection.
Tutorial-1.
Term II: (06 Lectures + 02 Tutorial)
Lecture-1. Discussion on concept of envelops.
Lecture-2. Methods of finding envelops of the family of curves of single parameter
Lecture-3. Methods of finding envelops of the family of curves of two parameters.
Lecture-4. Discussion on the concept of asymptotes of a curve having infinite branches
Lecture-5. Methods of finding asymptotes of an algebraic curve.
Lecture-6. Asymototes in polar
co-ordinate system

Tutorial-1

Tutorial-2
Term III: (02 Lectures + 01 Tutorial)
Lecture-1. Discussion on L' Hospitals Rule
Lecture-2. L' Hospitals Rule and its Applications
Tutorial-1

Term I: (05 Lectures+ 02 Tutorials)

Lecture-1: Introduction to the ordinary differential equation(ODE) and its applications in different fields.
Lecture-2: Types of solutions of an ODE: General, particular, explicit, implicit and singular solutions with examples.
Lecture-3: Conditions for existence and uniqueness of the solution of an ODE with examples.
Lecture-4: Definition and examples of first order exact differential equations and condition of exactness.
Lecture-5: Method of solution of first order exact differential equations with problems solving.
Tutorial-1
Tutorial-2

Term II: (04 Lectures+ 02 Tutorials)

Lecture-6: Concepts of integrating factors, rules to find an integrating factor.

Lecture-7: Linear differential equations of first order and its solution procedure.
Lecture-8: Bernoulli's Equations and its solution techniques.
Lecture-9: Continuation of Lecture 8.
Tutorial 1:
Tutorial 2:

		Term III: (05 Lectures+ 02 Tutorials) Lecture-10: First order higher degree equations solvable for x and solvable for y . Lecture-11: First order higher degree equations solvable for p . Lecture-12: Theory of singular solutions. Lecture-13: Discussion on special integrating factors. Lecture-14: Transformations applied to an ODE. Tutorial 1: Tutorial 2: Doubt-clearing session 1. Doubt-clearing session 2.
Prof. Sankar Das	Course type: Mathematics (Honours) Paper- MJ A1/B1T: No of Classes (Hour) per week: 1 Unit-3: Geometry (2D): UNIT-3: Reflection properties of conics, rotation of axes and seconddegree equations, classification of conics using the discriminant, polar equations of conics.	Term I: (06 Lectures) Lecture 1: Introduction of General equation of Second degree. Lecture 2: Reflection properties of conics, rotation of axes. Lecture 3: Transformation from one pair of rectangular axes to another with the same origin. Lecture 4: Metric classification of conics. Nature of the conic. Lecture 5: Centre of a conic. Conic with centre at the origin. Lecture 6: Tutorial Term II: (06 Lectures) Lecture 7: Reduction of the equation of a conic. Lecture 8: Canonical form of a conic. Nature of the conic. Lecture 9: Polar coordinates. Change from cartesian to polar system of coordinates and vice-versa. Lecture 10: Polar equation of a straight line, Circle. Lecture 11: Polar equation of a conic referred to a focus as pole. Lecture 12: Tutorial Term III: (05 Lectures) Lecture 13: Equation of the chord of a conic. Lecture 14: Tangent and normal of a conic. Lecture 15: Polar equation of chord of contact of tangents. Lecture 16: Equation of the polar of a point with respect to a conic. Lecture 17: Tutorial
	Course type: Mathematics (General) Paper- 3 years MI-1 (Geometry \& Differential Equations) No of Classes (Hour) per week: 2 UNIT-3: Reflection properties of conics, rotation of axes and seconddegree equations, classification of conics using the discriminant, polar equations of conics. Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, generating	Term I: (12 Lectures) Lecture 1: Introduction of General equation of Second degree. Lecture 2: Reflection properties of conics, rotation of axes. Lecture 3: Transformation from one pair of rectangular axes to another with the same origin. Lecture 4: Metric classification of conics. Nature of the conic. Centre of a conic. Conic with centre at the origin. Lecture 5: Reduction of the equation of a conic. Lecture 6: Canonical form of a conic. Nature of the conic. Lecture 7: Polar coordinates. Change from cartesian to polar system of coordinates and vice-versa. Lecture 8: Polar equation of a straight line, Circle. Lecture 9: Polar equation of a conic referred to a focus as pole. Equation of the chord of a conic. Tangent and normal of a conic. Lecture 10: Polar equation of chord of contact of tangents. Equation of the polar of a point with respect to a conic.

	lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid. UNIT-4: General, particular, explicit, implicit and singular solutions of a differential equation. First order but not first degree. Exact differential equations and integrating factors, and equations reducible to this form, linear equation, Bernoulli equation and special integrating factors and transformations.	Lecture 11: Tutorial Lecture 12: Tutorial Term II: (10 Lectures) Lecture 13: Equation of Spheres. Equation of a circle. Lecture 14: Sphere through a given circle. Equation of tangent plane. Lecture 15: Equation of Cylindrical surfaces. Lecture 16: Equation of right circular cylinder. Lecture 17: Equation of Central conicoids, paraboloids, ellipsoid. Lecture 18: Plane sections of conicoids. Lecture 19: Generating lines, classification of quadrics, Lecture 20: Illustrations of graphing standard quadric surfaces like cone. Lecture 21: Tutorial Lecture 22: Tutorial Term III: (13 Lectures) Lecture 23: Introduction of Ordinary differential equation of first order. Lecture 24: Formation of differential equations. Lecture 25: General, particular, explicit, implicit and singular solutions of a differential equation. Lecture 26: Differential equations of first order but not first degree. Lecture 27: Exact differential equations and integrating factors, and equations reducible to this form. Lecture 28: Equations solvable by separation of variables. Lecture 29: Homogeneous differential equations. Lecture 30: Linear differential equations. Lecture 31: Differential equations with Clairaut's form. Lecture 32: Bernoulli differential equations. Lecture 33: Special integrating factors and transformations. Lecture 34: Tutorial Lecture 35: Tutorial
Dr. Anjana Mondal	Course: B. Sc. (Hons.) Major in Mathematics Course Type: Major-1 Course Code: MATHMJ101 Unit-III: 3D Geometry (Marks-18) No. of Classes (Hour) per week: 1 Spheres, Cylindrical surfaces, Central conicoids, Paraboloids, Plane sections of conicoids, Generating lines, Classification of quadrics, Illustration of graphing standard quadric surfaces like cone, Ellipsoid	Term I: (5 Lectures+ 01 Tutorial) Lecture-1: Equation of sphere in standard and central form. Radius and coordinate of centre of sphere from general equation of sphere. Equation of a sphere when coordinates of extreme points of diameter is given. Lecture-2: Section of a sphere by a plane. Lecture-3: Equation of sphere through the intersection of two given spheres. Intersection of two spheres. Lecture-4: Tangent plane of sphere at a given point. Equation of normal at a point. Lecture-5: Cylinder, Equation of Right Circular Cylinder. Tutorial-1 Term II: (03 Lectures+ 01 Tutorial) Lecture-6: Cone, right circular cone Lecture-7: General equation of central conicoid. Ellipsoid Lecture-8: Classification of quadrics Tutorial-2

Lecture-9. Ellipsoid
Lecture-10: Paraboloid
Lecture-11: Hyperboloid of one sheet and two sheets
Tutorial-3

Course: B. Sc. (Hons.) Major in Mathematics
Course Type: SEC
Course Code: MATSEC01

Course Title: P: MATLAB-1:

(Marks-50)
No. of Classes (Hour) per week: 2
MATLAB interface, data types, variables, flow control statements, arrays: creating, indexing, operations, Matrix creating, indexing, operations, input and output function, mathematical library functions, user-defined function: anonymous function. Plotting of two dimensional functions: graph plotting, graph formatting (title, axis, line styles, colours, etc.), Multiple plots, matrix plots, polar plots, 3D plotting (line, surface, mesh, and contours) of three dimensional functions.
i. Find the sum, product, max, min of a list of number in an array, in a sub-array without library function.
ii. Find a sub-matrix of a given matrix.
iii. Find the column sum, product, max, min of a given matrix without library function.
iv. Find the row sum, product, max, min of a given matrix without library function.
v. Define any transcendental function and then find and show the table of its functional values.
vi. Plotting of graph of functions $e^{a x+b}, \log (a x+$
b), $\log \left(\frac{1}{a x+b}\right), \sin (a x+$ b), $\cos (\mathrm{ax}+\mathrm{b}),|\mathrm{ax}+\mathrm{b}|$ and to illustrate the effect of a and b on the graph.
vii. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.

Term I: (10 Practicals)

Practical-1: MATLAB interface, data types, variables, flow control statements
Practical-2: arrays: creating, indexing, operations, Matrix creating
Practical-3: Matrix creating, indexing operations, input and output functions
Practical-4: user-defined function: anonymous function
Practical-5: Plotting of two dimensional functions: graph plotting, graph formatting, title, axis, line, colours, etrc
Practical-6: Multiple plots, matrix plots
Practical-7: Polar plots
Practical-8: 3D plotting (line, surface, mesh and contours)
Practical-9: different types of loops in MATLAB
Practical-10: Finding the sum, product of a list of number in an array and sub-array without using library function

Term II: (06 Practicals)

Practical-11: Finding max, min of a list of number in an array, in a sub-array without using library function
Practical-12: Finding a sub-matrix of a given matrix
Practical-13: Finding the column sum, product, max, min of a given matrix without using library function.
Practical-14: Finding the column sum, product, max, min of a given matrix without using library function.
Practical-15: Defining any transcendental function and then finding and showing the table of its functional values.
Practical-16: Plotting of graph of functions $e^{a x+b}, \log (a x+$ b), $\log \left(\frac{1}{a x+b}\right), \sin (a x+b), \cos (\mathrm{ax}+\mathrm{b}),|\mathrm{ax}+\mathrm{b}|$ and to illustrate the effect of a and b on the graph.

Term III: (06 Practicals)

Practical-17. Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing them.
Practical-18: Sketching parametric curves (e.g., trochoid, cycloid, epicycloids, hypocycloid).
Practical-19: Tracing of conics in Cartesian coordinates/ polar coordinates.
Practical-20: Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates.
Practical-21: Revision
Practical-22: Revision

	viii. Sketching parametric curves (e.g., trochoid, cycloid, epicycloids, hypocycloid). ix. Tracing of conics in Cartesian coordinates/ polar coordinates. x. Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates.	
Dr. Kousik Bhattacharya	Course type: Mathematics (Honours) and 3 year MDC Paper- Minor-1(4 year Hons.), Minor-1(3 year MDC: Physical Science) No of Classes (Hour) per week: 2 Minor-1-: Calculus, Geometry \& Differential Equation Unit-I: (Calculus -I): Marks: 16 Hyperbolic functions, higher order derivatives, Leibnitz rule and its applications to problems of type eax+bsinx, eax+bcosx, (ax+b)nsinx, (ax+b)ncosx, concavity and inflection points, envelopes, asymptotes, curve tracing in cartesian coordinates, tracing in polar coordinates of standard curves, L'Hospital's rule, applications in business, economics and life sciences. Unit-II: (Calculus -II): Marks: 14 Reduction formulae, derivations and illustrations of reduction formulae of the type $\int \sin n x d x, \int \cos n x d x$, $\int \tan n x d x, \int \sec n x d x, \int(\log x) n d x$, $\int \operatorname{sinnx} \operatorname{sinmx} d x$, parametric equations, parameterizing a curve, arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.	Term I (8 Lectures) Lecture 1: Hyperbolic functions, higher order derivatives Lecture 2: Leibnitz rule and its applications to problems of type eax+bsinx, eax+bcosx, (ax+b)nsinx, (ax+b)ncosx, Lecture 3: concavity and inflection points Lecture 4: Concept and geometrical foundation of envelopes Lecture 5: Related problems of envelopes Lecture 6: Concept and geometrical foundation of asymptotes Lecture 7: Related problems of Asymptotes Lecture 8: Tutorial Term II (8 Lectures) Lecture 9: curve tracing in cartesian coordinates Lecture 10: tracing in polar coordinates of standard curves Lecture 11: L'Hospital's rule, applications in business, economics and life sciences Lecture 12: Different kind of typical problems Lecture 13: Reduction formulae with general derivation Lecture 14: Illustrations of reduction formulae of the type $\int \sin n x$ $d x, \int \cos n x d x, \int \tan n x d x, \int \sec n x d x$ Lecture 15: Illustrations of reduction formulae of the type $\int(\log x) n$ $d x, \int \operatorname{sinnx} \sin m x d x$, parametric equations Lecture 16: Tutorial Term III (8 Lectures) Lecture 19: Parameterizing a curve, arc length of a curve, Lecture 20: Arc length of parametric curves, area under a curve Lecture 21: Area and volume of surface of revolution Lecture 22: Techniques of sketching conics. Lecture 23: Tutorial Lecture 24: Tutorial
Buddhadeb Mondal	Course type: Mathematics (Minor): Paper- MTMI01: No of Classes (Hour) per week: 2 Unit III: Geometry : (Marks-09) Reflection properties of conics, rotation of axes and second-degree equations, classification of conics	Term I (9 Lectures) Lecture 1: Introduction to Reflection properties of conics, rotation of axes Lecture 2: Second-degree equations, Lecture 3: Classification of conics using the discriminates with examples Lecture 4: The polar equations of conics and some examples Lecture 5: Spheres, Cylindrical surfaces.

using the discriminant, polar equations of conics.
Spheres. Cylindrical surfaces. Central conicoids, paraboloids, plane sections of conicoids, generating lines, classification of quadrics, illustrations of graph in standard quadric surfaces like cone, ellipsoid

Unit IV: Differential Equation

: (Marks- 14)

Differential equations and mathematical models. General, particular, explicit, implicit and singular solutions of a differential equation. Exact differential equations and integrating factors, separable equations and equations reducible to this form, linear equation and Bernoulli equations, special integrating factors and transformations.

Lecture 6: Central conicoids, paraboloids with examples
Lecture 7: Examples solve
Lecture 8: Tutorial
Lecture 9: Tutorial
Term II (9 Lectures)
Lecture 10: Introduction to plane sections of conicoids
Lecture 11: Generating lines with an example
Lecture 12: classification of quadrics with examples
Lecture 13: Illustrations of graph in standard quadric surfaces like cone, ellipsoid
Lecture 14: Introduction to differential equations and mathematical models
Lecture 15: General, particular, explicit, implicit and singular solutions of a differential equation
Lecture 16: Examples solve
Lecture 17: Tutorial
Lecture 18: Tutorial

Term III (8 Lectures)

Lecture 19: Exact differential equations with examples
Lecture 20: What is integrating factors with examples
Lecture 21: Separable equations and equations reducible to this form
Lecture 22: linear equation with examples
Lecture 23: Bernoulli equations with examples
Lecture 24: Special integrating factors and transformations.
Lecture 25: Tutorial
Lecture 26: Tutorial

Semester III

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal Krishna Das	Course type: Mathematics (Honours) Core Course Paper- C7T \& C7P No of Classes (Hour) per week: 1 (Theory) No of Classes (Hour) per week: 4 (Practical) Unit 1: (Introduction) Marks: 02 Algorithms. Convergence. Errors: relative, absolute. Round off. Truncation.	Theory Term I (4 Lectures) Lecture 1: Algorithms. Convergence. Errors: absolute. relative, percentage Lecture 2: Errors: Inheritance, Truncation, Round off. And related problems Lecture 3: Concept of Transcendental and polynomial equations. Bisection method Lecture 4: Related problems of Bisection method Term II (4 Lectures)
	Unit 2: (Transcendental and Polynomials Equations) Marks: 07 Transcendental and polynomial equations: Bisection method, Newton's method, secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method. Rate of convergence of these methods.	Lecture 5: Newton's method and its related problems Lecture 6: Regula-falsi method and its Related problems Lecture 7: secant method and its related problems Lecture 8: Tutorial Term III (4 Lectures) Lecture 9: fixed point iteration and its related problems Lecture 10: Newton-Raphson method and its related problems
	C-7P : Numerical Methods Lab: (Marks 20)	Lecture 11: Rate of convergence of these methods Lecture 12: Tutorial
	1. Solution of transcendental and algebraic equations by i) Bisection method	Numerical Methods (Practical Lab) Term I (16 Lectures)
	ii) Newton Raphson method. iii) Secant method.	Lecture 1: Solution of transcendental and algebraic equations by Bisection method.
	iv) Regula Falsi method.	Lecture 2: Solution of transcendental and algebraic equations by Newton Raphson method.
	equations i) LU decomposition method ii) Gaussian elimination method iii) Gauss-Jacobi method iv) Gauss-Seidel method	Lecture 3: Practice Session: Demonstrate your program Bisection method for the equation $x^{3}+x^{2}-1=0$ and $x^{3}-4 x-9=0$ Lecture 4: Practice session: Demonstrate your program NR method for the equation $3 x-\cos x-1=0$ and $x^{3}-3 x+1=0$
	3. Interpolation i) Lagrange Interpolation	Lecture 5: Solution of transcendental and algebraic equations by Secant method
	ii) Newton Interpolation 4. Numerical Integration	Lecture 6: Solution of transcendental and algebraic equations by Regula Falsi method
	i) Trapezoidal Rule	Lecture 7: Practice Session: Demonstrate your program
	ii) Simpson's one third rule	Secant method for the equation $x^{3}+x^{2}-1=0$
	iii) Weddle's Rule iv) Gauss Quadrature	Lecture 8: Practice session: Demonstrate your program Regula Falsi for the equation $3 x-\cos x-1=0$
	5. Method of finding Eigenvalue by Power method	Lecture 9: Solution of system of linear equations by LU decomposition method
	6. Fitting a Polynomial Function	Lecture 10: Solution of system of linear equations by Gaussian elimination method

equations
i) Euler method
ii) Modified Euler method
iii) Runge Kutta method

Lecture 11: Practice Session: Write a program to solve the equations:
$10 x_{1}+8 x_{2}-3 x_{3}+x_{4}=16$
$2 x_{1}+10 x_{2}+x_{3}-4 x_{4}=9$
$3 x_{1}-4 x_{2}+10 x_{3}+x_{4}=10$
$2 x_{1}+2 x_{2}-3 x_{3}+10 x_{4}=11$
By using LU decomposition method
Lecture 12: Practice session: Write a program to solve the equations:
$10 x_{1}+8 x_{2}-3 x_{3}+x_{4}=16$
$2 x_{1}+10 x_{2}+x_{3}-4 x_{4}=9$
$3 x_{1}-4 x_{2}+10 x_{3}+x_{4}=10$
$2 x_{1}+2 x_{2}-3 x_{3}+10 x_{4}=11$
By using Gauss Elimination method
Lecture 13: Solution of system of linear equations by Gauss-Seidel method

Lecture 14: Solution of system of linear equations by Gauss-Jacobi method
Lecture 15: Practice Session: Write a program to solve the equations:
$20 x+y-2 z=17$
$3 x+20 y-z=-18$
$2 x-3 y+20 z=25$
By using Gauss Jacobi method
Lecture 16: Practice session: Write a program to solve the equations:

$$
\begin{gathered}
20 x+y-2 z=17 \\
3 x+20 y-z=-18 \\
2 x-3 y+20 z=25
\end{gathered}
$$

By using Gauss Seidal method

Term II (16 Lectures)

Lecture 17: Newton forward Interpolation
Lecture 18: Newton backward Interpolation
Lecture 19: Practice Session: Write a program to find the value of $f(142)$ by Newton Forward interpolation formula of the following information :

x	140	150	160	170	180
$f(x)$	3.685	5.854	6.302	8.072	10.225

Lecture 20: Practice session: Write a program to find the value of $f(172)$ by Newton Backward interpolation formula of the following information :

x	140	150	160	170	180
$f(x)$	3.685	5.854	6.302	8.072	10.225

		Lecture 36: Practice session: Write a program to find the value of y when $y(0.1)$ and $y(0.2)$ from the differential equation $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$ by Euler's method. Lecture 37: Solution of ordinary differential equations by Modified Euler method Lecture 38: Solution of ordinary differential equations by R-K method $2^{\text {nd }}$ order and $4^{\text {th }}$ order Lecture 39: Practice Session: Given that $\frac{d y}{d x}=2+$ $\sqrt{x y}$ with $y(0)=1$. Write a program to find the approximate value of y at $x=2$ in steps of 0.2 , using modified Euler's method. Lecture 40: Practice session: Write a program to find the value of y when $x=0.1$ and 0.2 from the differential equation $\frac{d y}{d x}=x^{2}-y, y(0)=1$ by modified Euler's method. Lecture 41: Practice Session: Write a program to solve the ODE $\frac{d y}{d x}=1+y \sin x-x^{2}, y(0)=0$ at $x=0.2$ by using R-K method of second order. Lecture 42: Practice Session: Write a program to solve the ODE $\frac{d y}{d x}=x^{2}-y^{2}, y(0)=2$ at $x=1.5, h=0.5$ by using $\mathrm{R}-\mathrm{K}$ method of fourth order.
Dr. Pradip Kumar Gain	(HONOURS) No of Classes (Hour) per week: 3 CC-5T: (Unit-II) Real Function-II Marks-14 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials	Term I: (04 Lectures+ 01 Tutorial) Lecture-1. Discussion on previous knowledge of differential co-efficient of a function. Lecture-2. Differentiability of a function at a point and in an interval Lecture-3. Algebra of differentiable functions. Relative extrema, interior extremum theorem. Lecture-4. Problems on differentiability. Tutorial-1 Term II: (04 Lectures + 01 Tutorial) Lecture-1. Discussion on expansion of functions. Lecture-2. Discussion on Rolle's theorem and application of Rolle's theorem Lecture-3. Discussion on Mean value theorem, intermediate value property of derivatives. Lecture-4. Problems Tutorial-1 Term III: (04 Lectures + 01 Tutorial) Lecture-1. Discussion on Darboux's theorem. Lecture-2. Applications of mean value theorem to inequalities. Lecture-3. Applications of mean value theorem for approximation of polynomials. Lecture-4. Various Problems on mean value theorem Lecture-5. Some examples and problems on Riemann integration. Tutorial-1

(HONOURS)

CC-5T: (Unit-III)
Real Function-III Marks-14

Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $\ln (1+x), 1 /(a x+$ b) and $(x+1) n$. Application of Taylor's theorem to inequalities.

Dr. Sangita
Chakraborty

Course type: Mathematics (Honours) Core Course (Under CBCS)

Paper- C6T: (Group Theory-I)

No of Classes (Hour) per week: 3

Unit-1: (Marks-09)
Symmetries of a square, dihedral groups, definition and examples of groups including permutation groups and quaternion groups(through matrices), elementary properties of groups.

Unit-2: (Marks: 14)
Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups.

Unit-3: (Marks: 14)
Properties of cyclic groups, classification of subgroups of cyclic groups. Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's

Lecture-1. Discussion on Cauchy's mean value theorem.
Lecture-2. Taylor's theorem with Lagrange's form of remainder Lecture-3. Taylor's theorem with Cauchy's form of remainder

Lecture-4. Various Problems on Taylor's Series.
Tutorial-1

Term II: (03 Lectures + 01 Tutorial)
Lecture-1. Application of Taylor's theorem to convex functions.
Lecture-2. Application of Taylor's theorem to relative extrema.

Lecture-3. Discussion on Various problems

Tutorial-1

Term III: (05 Lectures + 01 Tutorial)

Lecture-1. Maclaurin's series expansions.
Lecture-2. Expansions of exponential and trigonometric functions in the neighbourhood of 0 .
Lecture-3. Expansions of $\ln (1+x), 1 /(a x+b)$ and (x+1)
Lecture-4. Application of Taylor's theorem to inequalities.
Lecture-5. Problems
Tutorial-1

Term I: (10 Lectures+ 02 Tutorials)

Lecture 1: Introduction to Group Theory. Definition and examples of groups.
Lecture 2: Elementary properties of groups with examples.
Lecture 3: Symmetries of a group: symmetries of a square, dihedral groups.
Lecture 4: Permutation groups and its properties.
Lecture 5: Quaternion groups through matrices.
Lecture 6: Concepts of order of an element with its properties and examples.
Lecture 7: Definition and examples of subgroups. Properties of subgroups.
Lecture 8: Some important subgroups: cyclic subgroups of various groups.
Lecture 9: Continuation of Lecture 8: Center of a group with various examples, centralizer of an element.

Lecture 10: Product of two subgroups with properties and examples.

Tutorial-1

Tutorial-2

Term II: (08 Lectures+ 02 Tutorials)

Lecture 11: Introduction to permutations and its properties.

	theorem and consequences including Fermat's Little theorem. Unit-4: (Marks-09) External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit-5: (Marks: 14) Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third isomorphism theorems.	Lecture 12: Cycle notation for permutations, even and odd permutations, alternating group. Lecture 13: Definition and properties of cyclic groups. Lecture 14: Classification of subgroups of cyclic groups. Lecture 15: Concept of cosets and its properties. Lecture 16: Normal subgroup and normalizer of a group and finding these for various groups. Lecture 17: Discussion on Lagrange's Theorem and its consequences. Lecture 18: Fermat's Little theorem in the context of Lagrange's theorem. Tutorial-3 Tutorial-4 Term III: (09 Lectures+ 02 Tutorials) Lecture 19: External direct product of a finite number of groups with properties and examples. Lecture 20: Factor groups and its poperties. Lecture 21: Cauchy's theorem for finite abelian groups. Lecture 22: Introduction to group homomorphisms, properties of homomorphisms, Lecture 23: Properties of isomorphisms. Lecture 24: Cayley's theorem. Lecture 25: First isomorphism theorem. Lecture 26: Second isomorphism theorem. Lecture 27: Third isomorphism theorem. Tutorial-5 Tutorial-6 Doubt-clearing session:
Prof. Sankar Das	Course type: Mathematics (Honours) Core Course Paper- C5T (Introduction to Metric Space) No of Classes (Hour) per week: 1 Unit 4: Metric spaces: Definition and examples. open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces.	Term I: (06 Lectures) Lecture 1: Introduction of Metric Spaces. Lecture 2: Definition and examples of Metric Spaces. Lecture 3: Open balls and Closed balls, Lecture 4: Neighbourhood of a point in Metric Space. Lecture 5: Tutorial Lecture 6: Tutorial Term II: (05 Lectures) Lecture 7: Open sets, Interior of a set. Lecture 8: Limit point of a set. Lecture 9: Closed sets. Lecture 10: Tutorial Lecture 11: Tutorial Term III: (04 Lectures) Lecture 12: Diameter of a set, subspaces. Lecture 13: Dense sets, separable spaces. Lecture 14: Tutorial Lecture 15: Tutorial

Dr. Anjana Mondal	Course type: Mathematics (Honours) Core Course Paper- C5-T Unit- I: (Real Function-I) Marks: 21 No. of Classes (Hour) per week: 2 Limits of functions $(\varepsilon-\delta$ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, nonuniform continuity criteria, uniform continuity theorem.	Term I: (10 Lectures+ 02 Tutorials) Lecture-1: Limits of functions Lecture-2: Limits of functions ($\varepsilon-\delta$ approach) Lecture-3: Sequential criteria for limit of functions Lecture-4: Limit theorems Lecture-5: Limit theorems Lecture-6: Sandwich theorem and its application Lecture-7: One sided limits Lecture-8: Infinite limits Lecture-9: Limit at infinity Lecture-10: Some important limits Tutorial-1 Tutorial-2 Term II: (06 Lectures+ 02 Tutorials) Lecture-11: Continuous functions Lecture-12: , sequential criterion for continuity and discontinuity Lecture-13: Algebra of continuous functions Lecture-14: Algebra of continuous functions Lecture-15: Different types of discontinuity Lecture-16: Continuous functions on an interval Tutorial-3 Tutorial-4 Term III: (06 Lectures+ 02 Tutorials) Lecture-17. Neighborhood property of continuous functions Lecture-18: Intermediate value theorem Lecture-19: location of roots theorem Lecture-20: preservation of intervals theorem Lecture-21: Uniform continuity, non-uniform continuity criteria, Lecture-22: uniform continuity theorem. Tutorial-5 Tutorial-6
	Course type: Mathematics (General) Paper- DSC-1C/2C/3C-T No. of Classes (Hour) per week: 2 Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of BolzanoWeierstrass theorem. Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem	Term I: (10 Lectures+ 02 Tutorials) Lecture-1: Finite and infinite sets, examples of countable and uncountable sets Lecture-2: Properties of real number system Lecture-3: Properties of real number system Lecture-4: bounded sets, suprema and infima Lecture-5: completeness property of R Lecture-6: Archimedean property of R Lecture-7: Neighbourhood, Interior point, open set Lecture-8: Limit point, isolated point Lecture-9: Closed set, derived set

	on limits, order preservation and squeeze theorem, monotone sequences and their convergence (monotone convergence theorem without proof).	Lecture-10: Bolzano-Weierstrass theorem Tutorial-1 Tutorial-2 Term II: (06 Lectures+ 02 Tutorials) Lecture-11: Sequences, Convergent sequences Lecture-12: Limit of sequences, geometrical interpretation, examples, technique of proving convergent sequence using $\epsilon-\delta$ definition. Lecture-13: Divergent sequences, bounded sequences, relation between convergent and bounded sequences Lecture-14: Some theorems on convergent sequences Lecture-15: Limit point of sequences, difference between limit and limit point of sequences Lecture-16: Algebraic properties of limit of sequences and applications Tutorial-3 Tutorial-4 Term III: (06 Lectures+ 02 Tutorials) Lecture-17. : Sandwich theorem and applications Lecture-18: Monotone sequences, Monotone convergence theorem Lecture-19: Subsequence, divergence criteria, applications Lecture-20: Monotone subsequence theorem, applications Lecture-21: The Bolzano Weierstrass theorem, applications Lecture-22: Limit superior and Limit inferior, applications Tutorial-5 Tutorial-6
Dr. Kousik Bhattacharya	Course type: Mathematics (Honours) Core Course Paper- C7T \& C7P No of Classes (Hour) per week: 4 C-7T : Unit III: System of Linear Equations: (Marks 07) System of linear algebraic equations: Gaussian elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. LU decomposition C-7T : Unit IV: Interpolation: (Marks 10) Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference	Term I (Lectures 16) Lecture 1: System of linear algebraic equations: Gaussian elimination Lecture 2: Related problems of Gauss elimination method Lecture 3: System of linear algebraic equations: Gauss Jordan methods. Lecture 4: Related problems of Gauss Jordan method Lecture 5: Gauss Jacobi method Lecture 6: Related problems of Gauss Jacobi method Lecture 7: Gauss Seidel method Lecture 8: Related problems of Gauss Seidel method Lecture 9: Convergence of Gauss Jacobi Method Lecture 10: Convergence of Gauss Seidel Method Lecture 11: LU decomposition Lecture 12: Related problems of LU decomposition Lecture 13: Diagonally dominant and its related problems

operators. Gregory forward and backward difference interpolation.
Numerical differentiation: Methods based on interpolations, methods based on finite differences.

C-7P : Numerical Methods Lab: (Marks 20)

1. Solution of transcendental and algebraic equations by
i) Bisection method
ii) Newton Raphson method.
iii) Secant method.
iv) Regula Falsi method.
2. Solution of system of linear equations
i) LU decomposition method
ii) Gaussian elimination method
iii) Gauss-Jacobi method
iv) Gauss-Seidel method
3. Interpolation
i) Lagrange Interpolation
ii) Newton Interpolation
4. Numerical Integration
i) Trapezoidal Rule
ii) Simpson's one third rule
iii) Weddle's Rule
iv) Gauss Quadrature
5. Method of finding Eigenvalue by Power method
6. Fitting a Polynomial Function
7. Solution of ordinary differential equations
i) Euler method
ii) Modified Euler method
iii) Runge Kutta method

Lecture 14: Several kinds of typical problems
Lecture 15: Tutorial
Lecture 16: Tutorial

Term II (16 Lectures)

Lecture 17: Interpolation: concept and its geometrical interpretation
Lecture 18: Lagrange interpolation
Lecture 19: Related problems of Lagrange interpolation
Lecture 20: Newton forward interpolation
Lecture 21: Related problems of Newton forward interpolation
Lecture 22: Newton backward interpolation
Lecture 23: Related problems of Newton backward interpolation
Lecture 24: Gregory forward difference interpolation
Lecture 25: Related problems of Gregory forward method
Lecture 26: Gregory backward difference interpolation
Lecture 27: Related problems of Gregory backward method
Lecture 28: Numerical differentiation methods based on interpolations
Lecture 29: Numerical differentiation methods based on finite differences.
Lecture 30: Related problems of numerical
differentiation
Lecture 31: Tutorial
Lecture 32: Tutorial

Term III (16 Lectures)

Numerical Methods Lab

Lecture 33: Solution of transcendental and algebraic equations by Bisection method \& Newton Raphson method.
Lecture 34: Solution of transcendental and algebraic equations by Secant method \& Regula Falsi method
Lecture 35: Solution of system of linear equations by LU decomposition method
Lecture 36: Solution of system of linear equations by Gaussian elimination method
Lecture 37: Solution of system of linear equations by Gauss-Jacobi method and Gauss-Seidel method
Lecture 38: Lagrange Interpolation
Lecture 39: Newton forward Interpolation
Lecture 40: Newton backward Interpolation
Lecture 41: Numerical Integration by Trapezoidal Rule and Simpson's one third rule
Lecture 42: Numerical Integration by Weddle's Rule and Gauss Quadrature
Lecture 43: Method of finding Eigenvalue by Power method
Lecture 44: Fitting a Polynomial Function

Course type: Mathematics (Honours)
Skill Enhancement Course
Paper- SEC-1T (Logic \& Sets)
No of Classes (Hour) per week: 1

Unit 1: Marks: 17

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.

Unit 2: Marks: 07

Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set.

Unit 3: Marks: 16

Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, types of relations, partitions, equivalence Relations with example of congruence modulo relation. Partial ordering relations, n - ary relations.

Course type: Mathematics (General) Skill Enhancement Course
Paper- SEC-1T (Logic \& Sets)
No of Classes (Hour) per week: 1 Marks -40
Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, single words and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations. Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting

Lecture 45: Solution of ordinary differential equations by Euler method and Modified Euler method
Lecture 46: Solution of ordinary differential equations by R-K method $2^{\text {nd }}$ order and $4^{\text {th }}$ order
Lecture 47: Practice session
Lecture 48: Practice session
Term I (4 Lectures)
Lecture 1: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions
Lecture 2: converse, contra positive and inverse propositions and precedence of logical operators.
Lecture 3: Propositional equivalence: Logical equivalences.
Lecture 4: Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.

Term II (4 Lectures)

Lecture 5: Sets, subsets, set operations and the laws of set theory and Venn diagrams.
Lecture 6: Examples of finite and infinite sets. Finite sets and counting principle.
Lecture 7: Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set.
Lecture 8: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections.

Term III (4 Lectures)

Lecture 9: Relation: Product set. Composition of relations, types of relations, partitions.
Lecture 10: equivalence Relations with example of congruence modulo relation.
Lecture 11: Partial ordering relations, n - ary relations.
Lecture 12: Tutorial
Lecture 13: Tutorial

Term I (4 Lectures)

Lecture 1: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions
Lecture 2: converse, contra positive and inverse propositions and precedence of logical operators.
Lecture 3: Propositional equivalence: Logical equivalences.
Lecture 4: Predicates and quantifiers: Introduction, quantifiers, binding variables and negations.

Term II (4 Lectures)

Lecture 5: Sets, subsets, set operations and the laws of set theory and Venn diagrams.
Lecture 6: Examples of finite and infinite sets. Finite sets and counting principle.

	principle. Empty set, properties of empty set. Cartesian product. Partition of sets. Power set of a set. Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation.	Lecture 7: Empty set, properties of empty set. Standard set operations. classes of sets. Power set of a set. Lecture 8: Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Term III (4 Lectures) Lecture 9: Relation: Product set. Composition of relations, types of relations, partitions. Lecture 10: equivalence Relations with example of congruence modulo relation. Lecture 11: Partial ordering relations, n - ary relations. Lecture 12: Tutorial Lecture 13: Tutorial
Buddhadeb Mondal	Course type: Mathematics (Honours) Core Course Paper- C-7T No of Classes (Hour) per week: 2 Unit-V: Integration: (Marks-09) Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's $1 / 3^{\text {rd }}$ rule, Simpsons $3 / 8$ th rule, Weddle's rule, Boole's Rule. midpoint rule, Composite trapezoidal rule, composite Simpson's $1 / 3^{\text {rd }}$ rule, Gauss quadrature formula. The algebraic eigen value problem: Power method. Approximation: Least square polynomial approximation. Unit-VI: Ordinary differential equations: (Marks-05) Ordinary differential equations: The method of successive approximations, Euler's method, the modified Euler method, RungeKutta methods of orders two and four.	Term I (10 Lectures) Lecture 1: Introduction to Numerical Integration Lecture 2: Derivation of Newton Cotes formula Lecture 3: Trapezoidal rule with examples Lecture 4: Simpson's $1 / 3^{\text {rd }}$ rule with examples Lecture 5: Simpsons 3/8th rule with examples Lecture 6: Weddle's rule with examples Lecture 7: Midpoint rule with examples Lecture 8: Composite trapezoidal rule with explanation. Lecture 9: Tutorial Lecture 10: Tutorial Term II (9 Lectures) Lecture 11: Composite Simpson's $1 / 3{ }^{\text {rd }}$ rule with examples Lecture 12: Derivation of Gauss quadrature formula Lecture 13: Introduction to algebraic eigen value problem Lecture 14: Power method with examples Lecture 15: Introduction to Approximation Lecture 16: Least square polynomial approximation with examples. Lecture 17: Some problems solve Lecture 18: Tutorial Lecture 19: Tutorial Term III (7 Lectures) Lecture 20: Introduction to Ordinary differential equations with examples Lecture 21: The method of successive approximations with examples Lecture 22: Euler's method with examples Lecture 23: Modified Euler method with examples Lecture 24: Runge-Kutta methods of orders two and four with examples Lecture 25: Tutorial Lecture 26: Tutorial

Semester V

Name of the Teacher	Syllabus Allotted	Teaching Plan
Dr. Bimal Krishna Das	Course type: Mathematics (Honours) Discipline Specific Course Paper-DSE1T (Linear Programming Problem) No of Classes (Hour) per week: 2 Unit-I: (Simplex Algorithm) Marks: 25 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, two-phase method. Big-M method and their comparison. Unit 2: (Duality) Marks: 11 Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.	Term I (8 Lectures) Lecture 1: Introduction to linear programming problem Lecture 2: Formulation of LPP and related problems Lecture 3: convex sets, convex hull, convex polyhedron, Hyperplane Lecture 4: Related theorems and problems on convex sets, Hyperplanes Lecture 5: Linearly dependent and independent sets, Basic solutions and Degenerate and Non-degenerate basic solutions Lecture 6: Basic feasible solutions and Degenerate and Non-degenerate basic feasible solutions Lecture 7: $x_{1}=2, x_{2}=3, x_{3}=1$ is a feasible solution of Maximize $z=x_{1}+2 x_{2}+4 x_{3}$ the LPP. feasible solution. $\begin{aligned} & \text { subject to, } 2 x_{1}+x_{2}+4 x_{3}=11 \text { Find a basic } \\ & 3 x_{1}+x_{2}+5 x_{3}=14 \\ & x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$ Lecture 8: Tutorial Term II (8 Lectures) Lecture 9: Graphical solution of LPP Lecture 10: Optimal solution, No feasible solution, Unbounded solution, infinitely many solutions of graphical solution of LPP, Standard form of LPP, Introduction of slack and surplus variables Lecture 11: Prove that if for a basic feasible solution $\mathbf{X}_{\mathbf{B}}$ of Maximize $Z=C X$ a LPP $\begin{gathered}\text { Maximize } z=\mathbf{C X} \\ \text { subject to, } \mathbf{A X}=\mathbf{b}, \mathbf{X} \geq \mathbf{0}\end{gathered}$ we have $z_{j}-c_{j} \geq 0$ for every column $\boldsymbol{a}_{\boldsymbol{j}}$ of \mathbf{A} then \mathbf{X}_{B} is an optimal solution. Lecture 12: Prove that if at any iteration of the simplex algorithm we get $z_{j}-c_{j}<0$ for at least one j and for this j, $y_{i j} \leq 0$ for all $i=1,2, . ., m$ then the LPP admits of an unbounded solution in a maximization problem. Lecture 13: Theory of simplex method, the simplex algorithm, simplex method in tableau format. Define Simplex, give an example of simplex at $\mathrm{E}^{1}, \mathrm{E}^{2}, \mathrm{E}^{3}$ Lecture 14: Solve the LPP by simplex method : Maximize $z=3 x_{1}+2 x_{2}+5 x_{3}$ subject to, $x_{1}+2 x_{2}+x_{3} \leq 430$ $\begin{gathered} 3 x_{1}+2 x_{3} \leq 460 \\ x_{1}+4 x_{2} \leq 420 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$ Lecture 15: Use simplex method to solve the LPP Maximize $z=2 x_{2}+x_{3}$ subject to, $x_{1}+x_{2}-2 x_{3} \leq 7$ $\begin{gathered} -3 x_{1}+x_{2}+2 x_{3} \leq 3 \\ x_{1}, x_{2}, x_{3} \geq 0 \end{gathered}$ Lecture 16: Introduction to artificial variables

Lecture-1. Continuous probability distributions:
Lecture-2. Uniform probability distributions.
Lecture-3. Normal probability distributions
Lecture-4. Problems.

Tutorial-1

Term I: (04 Lectures+ 01 Tutorial)
Lecture-1. Discussion on the concept of joint probability. distribution and its properties.
Lecture-2. Joint probability density functions.
Lecture-3. Marginal and conditional probability distributions.

Lecture-4. Various Problems.
Tutorial-1

Term II: (04 Lectures+ 01 Tutorial)

Lecture-1. Discussion on the concept of expectation of function of two random variables,
Lecture-2. Conditional expectations, independent random variables,
Lecture-3. Discussion on bivariate normal distribution.
Lecture-4. Problems..
Tutorial-1
Term III: (04 Lectures + 01 Tutorial)
Lecture-1. Discussion on correlation coefficient,:
Lecture-2. Discussion on joint moment generating function (jmgf)
Lecture-3. Calculation of covariance (from jmgf),
linear regression for two variables.
Lecture-4. Problems.
Tutorial-1
DSE-2T: (Unit-III)
Convergence in Probability Marks-09
Chebyshev's inequality, statement and interpretation of (weak) law of large numbers and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance, Markov chains, Chapman-Kolmogorov equations, classification of states.

Term I: (03 Lectures + 01 Tutorial)
Lecture-1. Discussion on Chebyshev's inequality,:
Lecture-2. Statement and interpretation of (weak) law of large numbers and strong law of large numbers.
Lecture-3. Problems.

Tutorial-1

Term II: (02 Lectures+ 01 Tutorial)

Lecture-1. Discussion on Central limit theorem for independent and identically distributed random variables with finite variance.

Lecture-2. Problems.

Tutorial-1

Term III: (02 Lectures+ 01 Tutorial)
Lecture-1. Discussion on Markov chains, Chapman
Kolmogorov equations, classification of states.
Lecture-2. Problems.
Tutorial-1

Course type: Mathematics (Honours) Core Course (Under CBCS)

Paper- C12T: (Group Theory-II)

No of Classes (Hour) per week: 3
Unit-1: (Automorphism Groups): (Marks-16)
Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties.

Unit 2: (Direct Products): (Marks-11) Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental theorem of finite abelian groups.

Unit 3: (Group Actions): (Marks-14)
Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.

Unit 4: (Class Equations and Sylow's Theorems): (Marks-19)
Groups acting on themselves by conjugation, Class equation and consequences, conjugacy in $\mathrm{S}_{\mathrm{n}}, \mathrm{p}$-groups, Sylow's theorems and consequences, Cauchy's theorem. Simplicity of A_{n} for $\mathrm{n}>=5$, non-simplicity tests.

Lecture 1: Recapitulation: Properties of homomorphism and isomorphism. Introduction to automorphism
Lecture 2: Automorphism groups, and its relation with permutation groups.
Lecture 3: Inner automorphism and its properties.
Lecture 4: Finding automorphism groups of finite and infinite cyclic groups.
Lecture 5: Solving problems on automorphisms, inner automorphisms.
Lecture 6: applications of factor groups to automorphism groups.
Lecture 7: Characteristic subgroups: Definition and properties
Lecture 8: Commutator subgroup: Definition and properties.
Lecture 9: Properties of external direct products with examples.
Lecture 10: To establish the group of units modulo n as an external direct product.

Tutorial 1:

Tutorial 2:
Doubt-clearing session :

Term II: (09 Lectures+ 02 Tutorials)

Lecture 11: Internal direct products: Definition and properties with example.
Lecture 12: Criteria for a group to be an internal direct product.
Lecture 13: Isomorphism between internal and external direct products.
Lecture 14: Fundamental theorem of finite abelian groups and its applications for classification of groups of certain order upto isomorphism.
Lecture 15: Introduction to group actions, stabilizers and kernels: Definition and properties with example.
Lecture 16: Representation of permutation associated with a given group action.
Lecture 17: Applications of group actions.
Lecture 18: Generalized Cayley's theorem.
Lecture 19: Index theorem.
Tutorial 3:
Tutorial 4:
Doubt-clearing session:

Term III: (09 Lectures+ 02 Tutorials)

Lecture 20: Groups acting on themselves by conjugation.
Lecture 21: Class equation and consequences.
Lecture 22: Determination of conjugacy in S_{n}. Solving problems on conjugacy classes and class equations.

		Lecture 23: Equations with non-homogeneous boundary conditions. Lecture 24: Non- homogeneous wave equation. Lecture 25: Method of separation of variables, solving the vibrating string problem. Lecture 26: Solving the heat conduction problem. Lecture 27: Tutorial Lecture 28: Tutorial
Dr. Anjana Mondal	Course type: Mathematics (Honours) Discipline Specific Elective Paper- DSE-2T Unit 4: (Statistics) Marks: 21 No. of Classes (Hour) per week: 2 Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.	Term I: (10 Lectures+ 02 Tutorials) Lecture-1: Random variables, Discrete and continuous random variables, Distribution function, Probability density and probability mass function. Expectation of random variables Lecture-2: Some special discrete distributions and their properties. Lecture-3: Some special continuous distributions and their properties. Lecture-4: Definitions of population, sample, random sample, statistic, sampling distribution. Central limit theorem. Lecture-5: Chi-square distribution Lecture-6: Student's t distribution Lecture-7: F distribution. Lecture-8: Point estimation, Criteria of good estimators: unbiasedness Lecture-9: consistency and efficiency Lecture-10: Method of moment estimation Tutorial-1 Tutorial-2 Term II: (06 Lectures+ 02 Tutorials) Lecture-11: Method of moment estimation Lecture-12: Method of maximum likelihood estimation Lecture-13: Method of maximum likelihood estimation Lecture-14: Interval estimation Lecture-15: Interval estimation Lecture-16: Interval estimation Tutorial-3 Tutorial-4 Term III: (06 Lectures+ 02 Tutorials) Lecture-17. Hypothesis testing Lecture-18: Hypothesis testing Lecture-19: Hypothesis testing Lecture-20: Hypothesis testing Lecture-21: Hypothesis testing Lecture-22. Hypothesis testing Tutorial-5 Tutorial-6

	Course type: Mathematics (General) Paper- DSE-1AT No. of Classes (Hour) per week: 2 $R, R 2, R 3$ as vector spaces over R. Standard basis for each of them. Concept of Linear Independence and examples of different bases. Subspaces of R2, R3. Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigen values and eigenvectors for such transformations and eigen spaces as invariant subspaces.	Term I: ($\mathbf{1 0}$ Lectures+ 02 Tutorials) Lecture-1: Vector space over a field. Lecture-2: R, R2, R3 as vector spaces over R Lecture-3: Subspaces Lecture-4: Linear sum of two subspaces Lecture-5: Linear span Lecture-6: Linear dependence and independence Lecture-7: Basis of a vector space, Lecture-8: Standard basis for R, R2, R3 Lecture-9: Translation, Dilation, Rotation, Reflection in a point, line and plane Lecture-10: Translation, Dilation, Rotation, Reflection in a point, line and plane Tutorial-1 Tutorial-2 Term II: (06 Lectures+ 02 Tutorials) Lecture-11: Matrix form of basic geometric transformations Lecture-12: Characteristic equation and CayleyHamilton theorem Lecture-13: eigen values Lecture-14: eigen vectors Lecture-15: Revision Lecture-16: Revision Tutorial-3 Tutorial-4 Term III: (06 Lectures+ 02 Tutorials) Lecture-17. Revision Lecture-18: Revision Lecture-19: Revision Lecture-20: Revision Lecture-21: Revision Lecture-22 Revision Tutorial-5 Tutorial-6
Dr. Kousik Bhattacharya	Course type: Mathematics (Honours) Core Course Paper-C11T (Partial Differential Equations \& Applications) No of Classes (Hour) per week: 2 Unit 4: (Particle Dynamics) Marks: 20 Central force. Constrained motion, varying mass, tangent and normal components of	Term I (8 Lectures) Lecture 1: Central force and related problems Lecture 2: Central orbits and related problems Lecture 3: Apses and related problems Lecture 4: Different Kind of typical problems-I Lecture 5: Different Kind of typical problems-II Lecture 6: Different Kind of typical problems-III Lecture 7: Tutorial Lecture 8: Tutorial Term II (8 Lectures)

	acceleration, modelling ballistics and planetary motion, Kepler's second law.	Lecture 9: Constrained motion: concept Lecture 10: Constrained motion in circular path Lecture 11: Constrained motion in parabolic path Lecture 12: varying mass: its concept Lecture 13: Related problems on varying mass Lecture 14: Related typical problems of constrained motion Lecture 15: Tutorial Lecture 16: Tutorial Term III (8 Lectures) Lecture 17: Tangent and normal components of acceleration Lecture 18: Related problems on Tangent and normal components of acceleration Lecture 19: Modelling ballistics and planetary motion Lecture 20: Related problems on planetary motion Lecture 21: Kepler's second law Lecture 22: Related problems on Kepler's law Lecture 23: Tutorial Lecture 24: Tutorial
	Course type: Mathematics (General) Skill Enhancement Course SEC3T: (Number Theory) Marks - 40 No of Classes (Hour) per week: 1 Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem. Goldbach conjecture, binary and decimal representation of integers, linear congruences, complete set of residues. Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Möbius inversion formula, the greatest integer function, Euler's phi-function.	Term I (8 Lectures) Lecture 1: Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic, Lecture 2: prime counting function, statement of prime number theorem. Lecture 3: Goldbach conjecture, binary and decimal representation of integers Lecture 4: Tutorial Term II (10 Lectures) Lecture 5: linear congruences, complete set of residues. Lecture 6: Number theoretic functions, sum and number of divisors, Lecture 7: totally multiplicative functions Lecture 8: Tutorial Term III (8 Lectures) Lecture 9: definition and properties of the Dirichlet product Lecture 10: the Möbius inversion formula, the greatest integer function, Euler's phi-function. Lecture 11: Tutorial Lecture 12: Tutorial
Buddhadeb Mondal	Course type: Mathematics (Honours) Core Course Paper- DSE-1T (Linear Programming) No of Classes (Hour) per week: 2 Unit-II: Number Theoretic Function:	Term I (9 Lectures) Lecture 1: Introduction to Transportation problem with examples Lecture 2: Mathematical formulation Lecture 3: Northwest-corner method with examples Lecture 4: least cost method with examples Lecture 5: Vogel approximation method with explanation

Transportation problem and its mathematical formulation, northwestcorner method, least cost method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem

Unit-III: Game Theory (Marks- 14):

Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure of a linear programming of games.

Lecture 6: Algorithm for solving transportation problem
Lecture 7: Some Transportation problems solve
Lecture 8: Tutorial
Lecture 9: Tutorial

Term II (8 Lectures)

Lecture 10: Introduction to Assignment problem
Lecture 11: Its mathematical formulation
Lecture 12: Hungarian method for solving assignment problem
Lecture 13: Examples over Assignment problems
Lecture 14: Test of optimality of Assignment problems
Lecture 15: Tutorial
Lecture 16: Tutorial
Lecture 17: Tutorial
Term III (7 Lectures)

Lecture 18: Introduction to Game theory
Lecture 19: Formulation of two person zero sum games
Lecture 20: Solving two person zero sum games
Lecture 21: Games with mixed strategies,
Lecture 22: Graphical solution procedure of a linear programming of games.
Lecture 23: Tutorial
Lecture 24: Tutorial
Term I (8 Lectures)

Lecture 1: Introduction to matrices
Lecture 2: Matrices in diagonal form
Lecture 3: Reduction to diagonal form upto matrices of order 3
Lecture 4: Inverse of a matrix with examples
Lecture 5: Computation of matrix inverses using elementary row operations
Lecture 6: Tutorial
Lecture 7: Tutorial
Lecture 8: Tutorial
Term II (7 Lectures)

Lecture 9: Introduction to rank of matrices
Lecture 10: Determine rank of a matrix
Lecture 11: Solutions of a system of linear equations using matrices

Lecture 12: Examples
Lecture 13: Tutorial
Lecture 14 Tutorial
Lecture 15: Tutorial
Term III (9 Lectures)

Lecture 16: Illustrative examples of above concepts from Geometry

		Lecture 17: Illustrative examples of above concepts from
	Geometry, Physics, Chemistry, Combinatorics	
	Lecture 18: Introduction to statistics	
	Lecture 19: Examples	
	Lecture 20: Applications	
	Lecture 21: Tutorial	
	Lecture 22: Tutorial	
	Lecture 23: Tutorial	

